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Current policy is driving renewed impetus to restore forests
to return ecological function, protect species, sequester
carbon and secure livelihoods. Here we assess the contri-
bution of tree planting to ecosystem restoration in tropical
and sub-tropical Asia; we synthesize evidence on mortality
and growth of planted trees at 176 sites and assess structural
and biodiversity recoveryof co-located actively restored and
naturally regenerating forest plots. Mean mortality
of planted trees was 18% 1 year after planting, increasing
to 44% after 5 years. Mortality varied strongly by site
andwas typically ca 20%higher in openareas thandegraded
forest, with height at planting positively affecting survival.
Size-standardized growth rates were negatively related to
species-level wood density in degraded forest and planta-
tions enrichment settings. Based on community-level data
from 11 landscapes, active restoration resulted in faster
accumulation of tree basal area and structural properties
were closer to old-growth reference sites, relative to natural
regeneration, but tree species richness did not differ. High
variability in outcomes across sites indicates that planting
for restoration is potentially rewarding but risky and con-
text-dependent. Restoration projects must prepare for and
manage commonly occurring challenges and align with
efforts to protect and reconnect remaining forest areas.

The abstract of this article is available in Bahasa Indone-
sia in the electronic supplementary material.

This article is part of the theme issue ‘Understanding
forest landscape restoration: reinforcing scientific foun-
dations for the UN Decade on Ecosystem Restoration’.
1. Introduction
Despite the critical role of equatorial forests in the global carbon
cycle and biodiversity conservation, recent decades have seen
extensive tropical deforestation and degradation, with losses
driven largely by logging and agricultural expansion [1–3].
Human-modified forests and secondary growth forests now
account for the majority of forest cover [4]. Forest restoration is
intended to mitigate damage from anthropogenic impacts by
reinstating tree cover where forests occurred naturally. The
growing focus on nature-based solutions (NbS) to address the
climate crisis [5] has resulted in ambitious, high-level commit-
ments for forest restoration and tree planting; for example, the
Bonn Challenge aims to restore 350 million hectares of defor-
ested land by 2030 (https://www.bonnchallenge.org/), with
some countries pledging in excess of 10% of their land area
to forest restoration [6]. With careful consideration of local
priorities, forest restoration in developing countries could offer
a so-called ‘triple win’ of reducing biodiversity losses and sup-
porting sustainable development while contributing to local
and global mitigation of and adaptation to climatic change.

Despite ambitions forvastlyscalingup restorationefforts, the
evidence for the efficacy of forest restoration is heterogeneous.
Outcomes of restoration activities can vary widely, suggesting
implementation challenges or competition for other land-uses,
and complicating prediction of the efficacy of future interven-
tions [7–9]. In practice, there has been an over-emphasis on
numbers of trees planted as a metric for forest restoration suc-
cess, rather than managing, protecting and monitoring how
these planted trees perform over longer timescales [10,11].
There is demand for an improved evidence-base of the long-
term outcomes, the timeframes required and uncertainties
around restoration, and the environmental factors and manage-
ment practices that influence the growth and survival of planted
trees. These knowledge advanceswill help to ensure that limited
resources available for forest restoration are used optimally [12].

Restoration may target some aspects of ecosystem func-
tioning (termed ecosystem restoration) or attempt to recover
the functions and biotic assemblages existing in native refer-
ence forest ecosystems (ecological restoration; see electronic
supplementary material, box S1). Our study focuses on eco-
system restoration of tropical and subtropical forests in
Asia, where forests have been subject to logging at varying
intensities, fragmentation and conversion to other land-
uses, and where restoration has been undertaken to return
structure and function of forests for the purposes of restor-
ation and future harvesting. The most common intervention
in forest restoration in tropical/subtropical Asia is the plant-
ing of nursery-grown saplings, which is often supplemented
by other treatments such as weeding, cutting climbers, liber-
ation thinning or planting of nurse plants (e.g. [13,14]). We
focus on the outcomes of tree planting as a tool for restor-
ation. Publications to date typically report on individual or
a few sites, but syntheses of evidence are needed for
improved predictions of the outcomes that can be expected
from forest restoration (e.g. [8,15–17]).

Asian forests have several distinct ecological features that
may present challenges for vegetation recovery. Large areas
of tropical Asian forest are dominated by the single tree
family Dipterocarpaceae [18,19] which has relatively short
dispersal distances through gravity and gyration of winged
fruits [20]. The clustered spatial structure of dipterocarp
populations may limit the capacity of forests to regenerate
naturally in parts of the landscape that are remote from
a seed source, and where logging has removed a large
proportion of the mature reproductive trees [20–22]. Inter-
annual mast fruiting events also govern reproduction and
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the availability of seed for regeneration, as well as seedling
stocks for reforestation [23,24]. Peat swamp forests are a dis-
tinctive variant of Southeast Asian lowland forests [25] that
have been heavily degraded by drainage, timber extraction
and clearance [26]. These activities have increased the suscep-
tibility of degraded peat swamp forests to fire and flooding,
resulting in a particularly challenging environment for
restoration [27–29].

(a) Potential environmental and biotic determinants of
forest recovery

Forest stands often show regeneration problems after harvesting
or agricultural abandonment, including a failure of some tree
species to recruit, which results in a shift in species composition
[30,31]. Forest structural changes associated with disturbance
and degradation alter microclimatic conditions, resulting in
increased exposure to solar radiation, reduced humidity and
more extreme temperatures [32–35]. In a global synthesis, Crou-
zeilles et al. [36] found that forest restorationwasmore successful
when previous disturbance was less intensive, which may be
driven by the availability of propagules for recovery, the
environmental barriers to recovery andongoing humandisturb-
ances. Assessment of the response of planted individuals helps
to disentangle the first cause from the latter two.

Microclimatic conditions, determined by vegetation struc-
ture, may interact with other broader scale environmental
factors (e.g. rainfall seasonality, soil conditions, temperature,
elevation) to exacerbate negative effects of disturbance. For
instance, Qie et al. [37] found El Niño-driven tree mortality was
higher at forest edges than in intact forest in Borneo. Forest recov-
ery may also vary according to soil conditions and topography,
with steep slopes, shallow soils andexposed ridges creating chal-
lenging conditions for regenerating stems [38].

Heterogeneous environmental conditions in disturbed eco-
systems can affect the relative performance of different tree
species [31,39]. In an Indonesian restoration site, Kardiman
et al. [40] found that growth and survival rates of 38 planted
tree species varied in response to microhabitat, suggesting
that species choice and site–species matching are critical for
the success of planting programmes. Plant functional traits pro-
vide a framework for predicting whether species are well-
adapted to a specific environmental setting [41,42]. Wood den-
sity is considered a key functional trait on the acquisitive–
conservative trait spectrum [43]. Higher community-average
wood densities are typically found where dry seasons are
more intense or in well-drained soil conditions, where high
wood densitymay offer hydraulic safety [44–46].Wood density
was positively related to survival of trees planted into pasture in
a restoration site in Australia and peat swamp forests in Asia
[47,48] while greater allocation to rooting depth enhanced
tree survival in a seasonally dry forest in Costa Rica [49]. The
role of functional traits in explaining recovery and determining
species-specific responses has not been widely explored in
Asian forests and predictive site–species matching is hampered
by a lack of trait data for most species [47]. The most widely
available functional trait information is wood density [50]
which presents a preliminary opportunity to explore
relationships between species-level vital rates and traits.

The diversity of plantings may affect long-term perform-
ance through ‘insurance’ and ‘portfolio’ effects that arise
when species differ in their responses to environmental vari-
ation in space and time [13,51,52]. Diversity at multiple levels,
including functional and genetic diversity, is important in
building resilient communities for the future [53,54] but
comes with the practical challenge of developing silvicultural
and horticultural knowledge for many species.

Assessments of restoration outcomes typically focus on sur-
vival and growth of planted trees at individual sites. These
metrics are useful indicators of early barriers to restoration
[55], but ultimately the longer-term goal of restoration is the
structural and compositional recovery of the whole plant com-
munity and broader ecosystem. Syntheses of plot-based data
have estimated the average above-ground carbon accumulation
rate in moist tropical forests naturally regenerating after clear-
ance as ca 4–5 Mg C ha−1 yr−1 depending on location and
disturbance history [56]. Analyses to date have focused on sec-
ondary growth after clearing [57] and we have fewer estimates
for actively restored forests (see electronic supplementary
material, Box S1) or those recovering from varying degrees of
degradation. A pan-tropical meta-analysis found that recovery
of vegetation structure and biodiversity (plants and animals)
had better outcomes in naturally regenerating forests than
those under active restoration (defined broadly as assisted
recovery of an ecosystem that has been degraded, damaged
or destroyed) [58]. However, most sites in this analysis were
not using different restoration methods in co-located plots
and thus not often directly comparable [59]. Since tree planting
is costly and upscaling is challenged by the need for supporting
infrastructure, it is imperative to determine when and where
tree planting is necessary to meet restoration goals [60].

Establishing a sound evidence-base to understand the
capacity, limitations and risks of restoration practices in terms
of effects on carbon accumulation and plant community diver-
sity and structure will benefit forest restoration decision-
making. Here, we synthesize evidence on forest recovery and
the efficacy of tree planting as an intervention for ecosystem
restoration in the tropical and sub-tropical forests of South
and Southeast Asia. Using a large database of published and
primary data, we specifically ask the following questions:

1. What are the observed rates of mortality for planted trees
in ecosystem restoration of tropical and sub-tropical Asian
forests?

2. How do rates of mortality and growth of planted trees
vary according to the biophysical environment (elevation,
temperature, rainfall, substrate type), habitat condition
and biotic factors (taxa planted, species richness of plant-
ings and species wood density)?

3. What are the differences in community-level basal area,
above-ground carbon and tree species richness between
forests actively restored via tree planting compared with
neighbouring naturally regenerating forests, at the same
time since disturbance?

2. Methods
(a) Data compilation
We compiled data on planted tree survival, planted tree size
and/or growth and area-based metrics of forest structure and
diversity in planted and unplanted adjacent plots. Our datasets
were compiled from online literature searches following the pro-
tocols outlined below (see electronic supplementary material,
appendix S1 for further details), supplemented by additional
published studies compiled by co-authors S.W.S. and N.E.B.R
from peat swamp forest sites [47], and unpublished data and
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Figure 1. Maps of study locations and frequency distributions for variables in planted tree datasets. Map of study sites within the seedling (a) survival and (b)
height datasets, showing study duration by colour (1 yr = 6 months to less than 18 months, 2 years = 18 months to less than 30 months, 3 years = 30 months to
less than 42 months, 4 years = 42 months to less than 54 months, 5–10 years = 54 months to less than 114 months, greater than 10 years = 114–396 months).
Frequency distributions (number of sites) are given for the height (red) and survival (blue) datasets for: (c) average planting density per site (ha−1); (d ) average
number of species planted in each treatment per site; (e) average length of study for each site; ( f ) average number of seedlings monitored per site; (g) number of
sites in each forest type and (h) number of sites in each habitat condition category. (Online version in colour.)
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grey literature contributed by FOR-RESTOR network partners
(www.ceh.ac.uk/our-science/projects/for-restor). We included
forest restoration studies from tropical or subtropical, moist or
dry broadleaf forest regions [61] of South and Southeast Asia
(figure 1). We compiled additional studies from references
cited in these papers, allowing us to capture regional and non-
ISI indexed journals. We conducted our final bibliometric
search on 15 May 2021 using the Web of Science database for
studies in the English language. Some additional peat swamp
forest studies were read in Indonesian by co-author N.E.B.R.

(b) Planted tree-level data
We screened studies to assess whether they contained data on
planted tree survival (numbers or proportions of trees that survived
or died at known census intervals) and/or size or growth (measures
of height, diameter, biomass or leaf number at multiple time points
or calculations of growth that could be converted to size at each
census). We read relevant studies in full and recorded numerical
data or extracted them from figures using WebPlotDigitiser [62].
We were interested in trees planted in field conditions, excluding
studies focusing only on naturally regenerating seedlings or those
conducted in greenhouses or nurseries. We excluded studies
where the final recorded census date was less than six months
after planting to ensure timescales relevant for restoration. We
recorded survival and growth metrics individually for each combi-
nation of site, species and treatment (where studies had replicated
experimental treatments) for trees planted at the same time. We
required there to be some information on disturbance history
prior to planting and/or a statement on the purpose of the planting

http://www.ceh.ac.uk/our-science/projects/for-restor
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to ensure relevance to the question of ecosystem restoration (elec-
tronic supplementary material, table S2) and exclude studies only
planting exotic commercial monocultures. A greater proportion of
studies reported change in plant height than other measures of
size, so we selected height as our metric for growth analyses.

For all relevant studies, we compiled data on ancillary vari-
ables to test for sources of variation in mortality and growth. We
recorded the following information: location (country, latitude
and longitude coordinates), duration of study, disturbance history
type, site condition prior to planting, restoration methods, diver-
sity of planting, planting density, seed source, tree age at
planting and tree height at planting. We recorded diversity of
planting and planting density at the treatment-within-species
level, but for some studies it was necessary to apply site-wide aver-
age values.We categorized disturbance prior to restoration into the
following classes: logging (clear fell and selective logging), agricul-
ture (pasture, shifting cultivation, cultivation and grassland),
plantation (oil palm, industrial monoculture), fire, mining or drai-
nage based on the information provided on the most recent
disturbance activity (usually the most severe). We classified the
site condition at the time of planting into one of three categories:
plantation enrichment (planting of native trees beneath non-
native or monoculture plantations as defined above), natural
forest enrichment (for secondary and logged forest sites) or
open (with little or no tree cover), indicating whether trees were
planted into existing tree canopy cover or more exposed con-
ditions. We recorded six additional categories of restoration
methods alongside planting (removal of competition, fertilizing,
protection, shading, water regulation and soil preparation; see
electronic supplementary material, appendix S1 for details). Due
to the inconsistent reporting of site biophysical data (altitude,
climate, soil), we extracted these variables from global datasets,
as reported below.

We checked the taxonomic names given for the planted trees
against global databases of known vascular plant species [63–65]
and we unified synonyms by adopting the accepted scientific
names given in World Flora Online [63]. In the few instances
where there was uncertainty about the identification (e.g. trees
were not identified at the genus level; species name was a syno-
nym for multiple accepted scientific names; significant spelling
errors), the data for that record were discarded. To test the role
of functional traits in determining survival and growth, we
extracted wood density data from the global wood density data-
base [50,66,67] using the BIOMASS package in R [68]. Averages
were calculated from globally distributed wood density values
due to low sample sizes for some parts of Asia. From the 625
unique species included in our datasets, wood density values
were assigned at the species (60.1%), genus (30.1%) or family
level (8.8%) on the basis that wood density is known to be phy-
logenetically conserved in tropical Asia [69]. For five species,
belonging to five families where family-level data were not avail-
able, the average of the entire dataset was used.

Overall, we compiled planted tree data from 176 restoration
sites (221199 trees) across South and Southeast Asia of which
148 sites (207 224 trees) reported data on survival and 136 sites
(102 412 trees) reported height growth. This included 108 sites
on mineral soils and 68 tropical peat swamp forest sites. In
total, 625 tree species (252 genera; 81 families) were planted
but species richness of plantings at individual sites was typically
low (median of three, range = 1–49 species planted per site;
figure 1). The five most common species planted were the dipter-
ocarp species Shorea balangeran planted at 39 sites, followed by
Dyera polyphylla in the Apocynaceae (31 sites), and the diptero-
carps Shorea leprosula (26 sites), Shorea parvifolia (25 sites) and
Shorea ovalis (16 sites). The five most common genera planted
were the dipterocarps Shorea (88 sites), Hopea (35 sites), Diptero-
carpus (21 sites) and Dryobalanops (20 sites) and Dyera (35 sites)
(see electronic supplementary material, figure S1).
Although the maximum study duration was 33 years, only 49
(28%) sites conducted censuses 5 years or more after planting
and the median study length was 2 years (figure 1). Median
planting density was 1111 seedlings ha−1 (figure 1), but this
information was only available for 42% of sites.

(c) Environmental data
For each site, we extracted biophysical and climatic variables
from the WorldClim datasets [70] at 2.5-minute resolution, aver-
aged across years 1970 to 2000. Based on their potential impact
on tree growth and survival we extracted elevation, mean
annual temperature, mean annual precipitation and dry-season
precipitation (precipitation in the driest consecutive three
months). Mean annual precipitation and dry-season precipitation
were highly correlated so we elected to proceed with dry-season
precipitation. The Harmonized World Soil Database [71] misclas-
sified soil at some peat swamp sites, and most forests on mineral
soil had a similar classification, so our analyses proceed without
using soil property data and instead use the dichotomous forest
type classification of forests on mineral soil or peat swamp forest.

(d) Community-level data
To establish differences in structure, biomass and biodiversity of
naturally regenerating forest comparedwith sites where tree plant-
ing had taken place, we conducted a second search that focused on
data available at the plot-level (electronic supplementary material,
appendix S2). We screened 373 papers in total to identify studies
that includedmonitoring of both natural regeneration and planted
restoration plot(s) that were establishedwithin the same landscape
at similar times and surveyed at least once for structural measures
(basal area and/or above-ground biomass or carbon density) and
indices of tree diversity. This resulted in 13 landscapes in total: data
from 12 landscapes were extracted from 15 studies identified
through the literature search, and co-authors provided data to
derive additional metrics for two landscapes and one further
unpublished landscape. The full dataset included a total area of
98.2 ha of restored forest across 452 plots (electronic supplemen-
tary material, table S5). Plots were surveyed from 0 to 50 years
since disturbance and 0 to 30 years since planting took place.

The community-level analysis was carried out on the three
metrics recorded from the literature search: above-ground carbon
density, basal area and tree species richness. The means of com-
parison between planted and unplanted areas differed among
studies: (i) 11 studies recorded plot-level metrics at one time
point, allowing for comparisons between planted and unplanted
plots; (ii) three studies recorded basal area at two or more time
points allowing comparisons of change over time, and (iii) seven
studies had recorded an old-growth reference value, against
which both planted and unplanted plot-level metrics could be
compared. As such, we conducted three statistical analyses,
reported below, and the studies used in each of these analyses
are indicated in electronic supplementary material, table S4.

(e) Data analysis
(i) Planted tree mortality
To accommodate the heterogeneous census intervals among sites
and studies and facilitate interpretation, we assessed mortality
with separate models for each standardized time point (1, 2, 3,
4 years [±6 months], 5–10 years [54–114 months] and greater
than 10 years [114–240 months] after planting). At each of the
time points, we modelled mortality (number of dead and alive
trees for a given site-species-treatment) via generalized linear
mixed effects models with a binomial error distribution and a
complementary log-log (cloglog) link function using the
glmmTMB package [72]. To ascertain average mortality at each
time point we fitted a model with an intercept term and
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random effects that accounted for variability associated with site,
species and species-within-site (given that species may perform
differently at different sites), and an observation-level random
effect for overdispersion.

We then tested for the effects of environmental variables (cli-
matic terms: mean annual temperature, dry-season precipitation,
elevation), forest type, forest condition, species richness of plant-
ings and wood density as additional fixed effects, with
interaction terms between wood density and forest type and
wood density and forest condition. We used the same random
effects structure aswith the intercept-onlymodels. Formodels cap-
turing studies over 5 years, we also tested the inclusion of a
covariate to account for differences in ‘exposure to hazard’
(ln[time in months]). Continuous predictor variables (wood den-
sity, climate terms) were centred and scaled to facilitate model
fitting.We used an information-theoretic approach to model selec-
tion, using the dredge function in the MuMIn package [73] which
fits all combinations of fixed effects terms, while always retaining
the specified random effects structure. We assessed the top-per-
forming models (lowest AIC and with ΔAIC< 2). In those
models we identified variables with importance value greater
than 0.8 (which is the proportion of models within the top subset
that contained that variables) and these variables were included
in the final selected model [74]. In addition, we ran separate
models to test for the effects of planting density and mean height
at planting on mortality on tree mortality at 1 and 2 years after
planting in open degraded and forest enrichment habitat classes.

We checked final models using the DHARMa package [75]
and assessed the marginal effects of the fixed effects terms
using the package ggeffects [76]. Model R2 values were calculated
for fixed effects terms only (marginal R2) and fixed and random
effects terms together (conditional R2) [77]. We examined the
variation explained by each random effect through intra-class
correlations (ICC), which indicate the strength of the correlation
between data points within a group [77].

(ii) Annual size-standardized height growth rate
Height growth was censused across varying intervals (from 6
to 396 months) and with large variability in size at planting
(mean = 42 cm, range = 2 cm–357 cm, figure 1). Since plant
growth rate is known to be size-dependent [78–80] we chose to
analyse annual size-standardized growth rate (AGR) rather than
absolute growth. For each case (treatment-within-species and
site) that had height recorded at four ormore time points, wemod-
elled height growth over time using linear or nonlinear least
squares regression using three candidate functions (linear, expo-
nential and Gompertz). When there were only three time points,
only the linear and exponential fits were tested (further details in
electronic supplementary material, appendix S3). We selected the
regression model with the lowest AIC and visually checked
model fits. We used the fitted curves to estimate the height at six
months either side of the time at which trees reached a standar-
dized height (namely, 100, 200 and 300 cm) and calculated the
AGR as the difference between these two values (i.e. growth in 1
year when the tree is a given size; see electronic supplementary
material, appendix S3 for details). The three standardized heights
were chosen to capture a large proportion of our data without the
need for extrapolating growth rates outside the range of the data.

AGR values were ln-transformed to meet the assumptions of a
Gaussian regression model and modelled as response variables in
linear mixed models using the lme4 package [81]. The maximal
models followed the same fixed effects structure as the mortality
models. We included crossed random effects for site and species
because variation explained by species-in-site was very minimal
and caused problems with model fitting; likewise, the growth
model for tree growth at 300 cm only included a random effect
term for site.We used the samemodel selection and evaluation pro-
cess as for mortality. Once the best model had been selected, we re-
fit themodel using a simulation approach to propagate uncertainty
associated with the growth curve fitting stage of the analysis
(detailed in electronic supplementary material, appendix S5). We
found little difference between the two approaches in terms of par-
ameter estimates and their confidence intervals and overall
uncertainty contributed by the curve-fitting step was low (elec-
tronic supplementary material, tables S8 and S9) so our inference
proceeded with the original models fitted to the observed data.

(iii) Community-level analysis
We analysed the three types of comparisons as follows. To com-
pare naturally regenerating and actively restored plots we paired
plots within a study based on the same time since disturbance; in
the case of two studies [82,83] this matching meant we could not
include data from all plots available. For each plot pairing we cal-
culated a log-response ratio (equation (2.1)) that we term
‘restoration response’ for each metric, m (above-ground carbon
density, basal area, tree species richness) which allowed us to
unify comparisons where monitoring methods varied among
sites (e.g. plot sizes, minimum tree size measured etc.) [84]. We
tested the departure of the restoration response from zero for
the three metrics by fitting a linear mixed effects model for
each metric, where we included mean time since disturbance
as a fixed effect, ‘study’ as a random factor and we weighted
by total area surveyed in the plot pair.

response ratio (restoration response)m

¼ ln
Active restorationm

Natural regenerationm

� �
ð2:1Þ

To test for differences in basal area growth over time between
the two restoration types (active restoration and naturally regen-
eration) we fit a linear mixed effects model with interacting fixed
effects terms of time since disturbance and restoration type, with
a random effect allowing the intercept and slope for each forest
survey plot within a study to vary based on time since disturb-
ance. We compared the AIC of the model with and without
inclusion of the interaction effect and selected the best model
based on the lowest AIC.

To compare the effect of restoration type (natural regeneration
and active restoration) relative to undisturbed, reference forest for
each of the threemetrics, we calculated the ‘recovery completeness’
log-response ratio following Jones et al. [85] (equation (2.2)) for
each metric, m (above-ground carbon density, basal area, tree
species richness). We tested the difference in recovery complete-
ness by fitting a linear mixed effects model, including time since
disturbance and restoration type as fixed effects, ‘study’ as a
random factor and we weighted by the area of the restoration
plot. We compared the AIC with the model excluding each fixed
effect and selected the best model based on the lowest AIC.

response ratio (recovery completeness)m ¼ ln
Restoredm

Old growthm

� �
ð2:2Þ

All data analyses were undertaken in R v. 4.0.4 and 4.1.0 [86].
3. Results
(a) Planted tree mortality
At 1 year after planting, average tree mortality was 18.0%
(95% CI = 14.5–22.2%; figure 2 and table 1). Average mortality
increased to 25.8% (95% CI = 20.1–32.7%) at 2 years and
44.0% (95% CI = 39.5–48.7%) mortality at 5–10 years after
planting. Beyond 10 years, mortality was on average 48.3%
(95% CI = 37.1–60.8%) (table 1). Mortality varied according
to habitat condition and this term was selected in the top-
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Figure 2. Mortality of planted trees is related to habitat condition. Coloured points are the observation level data (cases) where each point is a unique site–species–
treatment combination at a given time point. Horizontal grey lines show overall mean mortality for that time point (95% CIs given in table 1) determined by the
intercept-only models. (a–e) Black points and error bars show the estimated marginal mean mortality and 95% CIs for mortality by habitat condition class where
tree planting was conducted (forest enrichment, plantation enrichment and open degraded habitats), as determined by the best GLMMs (see main text for details
on model selection). ( f ) Habitat condition was not selected in the best model for cases greater than 10 years (table 1); white points (error bars) show the estimated
marginal means (95% CIs) for mortality by habitat condition, with monitoring duration also included in the model. (Online version in colour.)
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performing models at all time points except for the longest
running studies (greater than 10 years; nsites = 14) (table 1).
Mortality was consistently higher in open degraded sites
than in forest enrichment sites (figure 2); at 1 year after plant-
ing, mean mortality was 9% (95% CI = 7–13%) in forest sites
and 25% (95% CI = 20–31%) in open degraded sites. At 5–10
years after planting mortality was 31% (95% CI = 25–39%) in
forest sites and 54% (95%CI = 45–63%) in open sites. In general,
there were fewer observations from restoration within planta-
tion sites. At some time points, mortality rates of plantings in
plantations were more similar to forest enrichment settings
(years 2, 3, 5–10) and at some time points more similar to
open areas (years 1, 4).

Mortality was higher in peat swamp forests (28% [95%
CI = 20–39%]) than in forests on mineral soil (14% [95%
CI = 11–19%]) at 1 year after planting but not in subsequent
years (electronic supplementary material, appendix S4;
figure S3). At 5–10 years after planting, forest type was also
selected in the best model, with mean mortality higher in for-
ests on mineral soil (44% [95% CI = 37–51%]) than peat
swamp forest (30% [95% CI = 19–45%]) but the confidence
intervals were overlapping and sample size was low for
peat swamp forests (nsites = 5, ncases = 35). Peat swamp sites
were more frequently classed as open degraded than the
other habitat classes; we checked the influence of peat
swamp sites on our results and found the same effect of habi-
tat condition on mortality on mineral soils alone as with the
full dataset.

Broadly, the other covariates we tested (elevation, climatic
terms, planted species richness and wood density) were not
important drivers of mortality in our models. In several
instances, additional variables were selected in the best
models—at 1 year after planting, elevation was positively
associated with mortality rates; at 4 years after planting, temp-
erature was negatively associated and dry-season precipitation
positively associated with mortality (table 1). However, the
explanatory power of the fixed effects was low (marginal R2

ranging from 2 to 24% of variation explained across
models, table 1) and confidence intervals broad (electronic
supplementary material, figures S4–S8).

A greater proportion of variation was captured by the
random effects terms (conditional R2 in table 1, ranging
from 23% to 65%). In the first 3 years after planting, the site
term explained the greatest variation (25–47%) (ICC;
table 1); at 4 years after planting, inter-site variation was par-
tially accounted for by fixed effect terms temperature and
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Figure 3. Size-standardized annual height growth rate is related to wood density and habitat condition. The panels show the variables selected in the best models
for growth rate at 100, 200 and 300 cm. Each point (case) gives the estimated growth rate for a given site, species and treatment. Coloured lines give predictions
with shaded 95% confidence intervals (truncated to 600 cm yr−1 in panel b) when habitat condition was significant in the models. At 300 cm, habitat condition
was not significant and the mean relationship between growth and wood density is shown (black line with shaded 95% CIs). (Online version in colour.)
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dry-season precipitation. Variation explained by species
across the dataset was generally lower (less than 7%), with
a higher correlation between observations of the same species
within sites (table 1).

We found no effect of planting density on mortality (at
1 and 2 years after planting, in either open degraded or forest
enrichment settings). However, greater height at planting
reduced mortality rates in open degraded habitats at year 1
and marginally at year 2 (electronic supplementary material,
appendix S4, figure S9) while in forest enrichment habitats
height was negatively associated with mortality in year 1 but
they were not related at year 2.
(b) Annual growth rates
Wood density (g cm−3) was generally negatively associated
with tree growth rate (cm yr−1) at all three reference sizes
(100, 200 and 300 cm), but the effect of wood density on
growth varied according to habitat condition at the first
two reference sizes. There was no effect of wood density on
growth in open degraded conditions, but these terms were
negatively related in forest and plantation enrichment
environments (figure 3a,b; electronic supplementary material,
table S9). At 100 cm and average wood density (0.54 g cm−3),
growth rate was higher in open conditions (63.8 [95% CI
= 54.1–75.4] cm yr−1) and plantations (59.0 [95% CI = 44.6–
78.0] cm yr−1) than in degraded forest (40.0 [95% CI = 31.8–
50.3] cm yr−1). Similarly, at 200 cm and average wood density
(0.56 g cm−3), growth rate was higher in open conditions
(92.5 [95% CI=74.9–114.3] cm yr-1) and plantations (107 [95%
CI = 66.4–172.8] cm yr−1) than in degraded forest (65.9 [95%
CI = 48.8–89.0] cm yr−1). Therewas no significant effect of habi-
tat condition at 300 cm reference size which may indicate that
this effect is size-dependent, but the number of sites with
trees of this reference size was also fewer (n = 25; table 2).

We did not detect any difference in growth rates between
peat swamp forests and forests on mineral soils. None of the
other environmental variables tested had an effect on growth,
and in general the marginal R2 values were low (0.145, 0.057
and 0.009 for the models for 100 cm, 200 cm and 300 cm refer-
ence sizes respectively; table 2). As with the mortality rates,
more variation in growth was explained by the random
effects terms (see conditional R2, table 2). The site-level
random effect explained 38.4–65.4% of variation in growth
rate across the models for the three size classes (see ICCs,
table 2). Species (across the whole dataset) accounted for
8.6–13.4% of variation in growth at 100 cm and 200 cm
respectively; it was not possible to calculate variation
explained by species within site.
(c) Community-level studies
When we compared actively restored (planted) plots with
naturally regenerating plots we found no significant effect
of planting on above-ground carbon density (restoration
response = 1.108, 95% CI =−0.199–2.414 at average time
since disturbance = 20.2 years, nstudies = 6, nplot pairings = 38),
tree species richness (restoration response = 0.321, 95%
CI =−0.078–0.720 at average time since disturbance =
20.6 years, nstudies = 6, nplot pairings = 35) or basal area (restor-
ation response = 0.149, 95% CI =−0.093–0.391, at average
time since disturbance = 19 years, nstudies = 7, nplot pairings =
43) (figure 4b, electronic supplementary material, appendix
S6). While, on average, above-ground carbon density, basal
area and tree species richness were higher in actively restored
plots than in naturally regenerating plots, in all three metrics
the 95% CI of the restoration response overlapped zero
(figure 4b).

When we modelled basal area change over time, we
found that on average actively restored plots accumulated
basal area more quickly (0.715 m2 yr−1, 95% CI = 0.617–
0.813 m2 yr−1) than nearby naturally regenerating plots
(0.336 m2 yr−1, 95% CI = 0.136–0.436 m2 yr−1), as indicated
by a significant interaction between time since disturbance
and restoration type (ΔAIC = 11.5, nstudies = 3, nplots = 287;
figure 4c).

The above-ground carbon density and basal area of
actively restored plots were significantly closer to reference
values for old growth forests than naturally regenerating
plots (the model including a term for restoration type had
the lowest AIC), but there was no significant difference
between actively restored and naturally regenerating



Table 2. Testing drivers of seedling growth. Summaries of best linear mixed effects models for ln(growth rate (cm yr−1)) at three reference sizes: 100 cm,
200 cm and 300 cm. Maximal models included environmental variables (mean annual temperature, dry-season precipitation, elevation), forest type, forest
condition, species richness of plantings and wood density. Selected fixed effect terms are variables selected in best LMMs. Marginal R2, conditional R2 and
intra-class correlations (ICC) showing variation explained by fixed and random effects terms.

seedling reference size
(cm) 100 200 300

sample size:

n cases 310 341 256

n sites 50 38 25

n species 163 180 144

selected fixed effects

terms

habitat condition; wood density; condition: wood

density interaction

habitat condition; wood density; condition: wood

density interaction

wood density

marginal R2 0.145 0.057 0.009

conditional R2 0.547 0.593 0.657

ICC:

site 0.384 0.434 0.654

species 0.086 0.134 NA
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plots in terms of tree species richness (figure 4d ). Despite
having more similar metric values, actively restored
plots were still significantly lower than old-growth forests,
in terms of above-ground carbon density (recovery
completeness =−1.363, [95% CI = −2.520–−0.206], at average
time since disturbance = 18.7 years) and basal area (recovery
completeness =−0.612 [95% CI =−1.033–−0.192], at
average time since disturbance = 18.2 years) but tree species
richness of old growth forests fell within the 95%
confidence interval of actively restored plots (recovery com-
pleteness =−0.652 [95% CI =−1.383–0.080], average time
since disturbance = 23.7 years).

Across the three analyses, there was a tendency for
active restoration to have a positive effect on basal area and
above-ground carbon density recovery relative to natural
regeneration, but results were sensitive to the type of analysis
and combination of sites.
4. Discussion
(a) Demographic fate of planted trees
Our synthesis revealed that, on average, ca 20% of planted
trees died within 1 year and ca 50% had died once plantings
were beyond 10 years old. However, there was a large
amount of variability around these mean mortality rates.
Broad-scale climatic gradients explained very little of this
variation, but mortality was highly correlated at the site
level indicating there are environmental, methodological or
social factors operating which affect whole sites and that
restoration outcomes are highly context dependent.

Mortality was consistently lower at forest enrichment
sites than in open environments, supporting previous
global and regional studies which also found habitat con-
dition to be an important driver of outcomes. Crouzeilles
et al. [36] found that, globally, forest restoration was more suc-
cessful when previous disturbance was less intensive, and in
a review of enrichment planting, Paquette et al. [30] found
that survival of under-planted trees increased, up to a
threshold, with increasing shade-tree cover. Transplanted
seed and seedling survival were highest in older secondary
forest versus young forest across a restoration chronosequence
in tropical Australia [87]. Enhanced seedling survival under
tree canopies may result from the amelioration of extremes in
light, temperature and water availability which could be par-
ticularly problematic at early stages of establishment.
Provision of shade may be important for certain tree species
(e.g. some dipterocarps) which lack tolerance of high light
and temperature [88,89]. Qie et al. [31] found naturally regener-
ating seedlings had species-specific responses to levels of forest
degradation in Borneo, which is supported by evidence show-
ing that some species have a capacity to acclimate to conditions
in newly logged forests [90].

Proximity to established trees may have several other eco-
system benefits. An established tree canopy facilitates rapid
colonization of planted seedlings’ root systems by mutualistic
fungi, which are known to enhance seedling survival and
growth [91], whereas soil physical, chemical and biological
properties may be more disturbed in open sites as a result of
their disturbance history. This could be particularly important
in Asian dipterocarp forests because dipterocarps form obli-
gate ectomycorrhizal associations [19,91–93]. Lower rates of
survival in open degraded forests may also result from
increased competition and suppression by native and non-
native grasses, weeds, ferns and climbers; the presence of
grasses was found to be one of the leading factors in determin-
ing natural regeneration outcomes in a Costa Rican landscape
[94]. Overall, existing trees in the landscape support restoration
by enhancing the survival of planted trees, for example, in or
adjacent to degraded forest fragments; protecting forest rem-
nants is vital to restoration and the creation of forest ‘islands’
(applied nucleation) may play a similar function [95,96].

Tree mortality rates were higher in peat swamp forest
than forest on mineral soil in the first year after planting,
potentially reflecting additional environmental challenges
posed in degraded peatlands including higher susceptibility
to fire, peat subsidence and water table fluctuations following
drainage [27,97]. However, a recent review of peat swamp
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studies showed no significant effect of prior drainage on
seedling mortality, but found species choices to be impor-
tant—slower growing tree species survived for longer [47].
In our study, there were fewer peat swamp sites monitored
over longer time periods, but a better ability to detect
ongoing differences would help to elucidate drivers of differ-
ing outcomes between habitats. Predicted tree mortality in
plantations was variable across time points, which may also
have been driven by the low number of sites and the inherent
variability among those that were available for analysis. The
higher mortality rates in open degraded and peat swamp
sites indicate that the future of plantings is more uncertain
in these habitats, yet these sites may also be the least likely
to recover spontaneously because of the low residual density
of large adult trees and challenging environments in these
settings. More intensive management and maintenance may
reduce these risks and improve outcomes.

Few studies gave a quantitative record of baseline con-
ditions—this information would help to determine
thresholds at which certain risks or outcomes may occur and
guide restoration planning [12,98,99]. Risks may be mitigated,
through more intense maintenance and/or appropriate seed-
ling stocking densities to bring about rapid canopy closure in
very degraded systems [94,98]. We found a positive effect of
tree height at planting on survival in the open degraded
sites, as has been found in other studies [100]. Larger seedlings
are usually better equipped to withstand environmental chal-
lenges or maximize on opportunities for rapid growth, but
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they are also more costly to produce and plant so the cost−
benefit trade-off must be carefully assessed.

(b) Composition, diversity and wood density of
plantings

A large variety of tree species were used in restoration plant-
ings across Asia (a minimum of 625 species) but, on average,
species richness at any one site was low (median = 3 species),
indicating that only a small fraction of the native species pool
is used in restoration. This may reflect challenges associated
with seedling supply [101], particularly of rare species, and
the uncertainties over suitable propagation and silvicultural
techniques for many species. Variability in mortality rates
may arise because of species-specific responses and the appro-
priateness of selected species to the planting environment. Yet,
we found that typically the effect of site was stronger than that
of species. Partitioning individual species level effects is diffi-
cult when planting diversity is low and when higher-level
drivers of mortality are affecting all species, but it could also
be that some projects selected a few, well-known ‘safe’ species
with broad tolerances. InAsian forests, species assemblages are
often strongly habitat-associated and soil environments are
heterogeneous [102–104]. This may pose challenges for restor-
ation in the region because species may perform very
differently over small spatial scales.

We did not find a strong effect of the number of planted
species on survival, although detecting the effects of richness
on vital rates was hampered by the low species richness of
plantings at most sites. The effect of planted species diversity
will also depend on the diversity of the baseline community
pre-planting and the spatial arrangement of planting (i.e. the
local mixtures), for which we lacked data. More broadly, the
effects of low diversity in plantings may play out over time
spans longer than we were able to investigate, driven by
increasing susceptibility to plant diseases [52] or reduced
complementarity of space-filling and resource use among
the planted cohort [13,105]. A positive relationship between
diversity and survival was observed in a large-scale exper-
iment included in our synthesis after 10 years [13]. Bongers
et al. [106] showed an increasing importance of diversity on
forest productivity with time, which emphasizes the need
for long-term monitoring in restoration settings.

Wood density was not an important determinant of tree
mortality in our synthesis; this contrasted with a study of
seedling survival in seasonally dry forest in Australia where
Charles et al. [48] found a positive relationship between
wood density and survival of seedlings in restored rainforest.
Relationships between wood density and vital rates are likely
to be nuanced and context dependent [43]. In our study,
wood density displayed a negative relationship with height
growth in degraded forest and plantation settings at smaller
plant sizes (100 cm and 200 cm) where it may be particularly
beneficial to allocate carbon to growth as opposed to wood
density. Lack of competition from neighbouring trees and a
high light environment may mean wood density is a less
important driver of growth in open ecosystems [107,108].
A recent synthesis [100] found that in humid forests, acquisi-
tive traits (high specific leaf area, low wood density)
maximized the positive effect of seedling size on tree seedling
survival in a restoration context, and achieving rapid canopy
closure may help to provide the environment for recovery
of species more sensitive to climatic stress [109,110]. We
were only able to examine wood density as a measure of
plant function, while other traits may be important in influ-
encing survival, growth and their trade-offs. Furthermore,
we lacked finer-resolution soil information which is likely
to be important for contextualizing trait–rate relationships.
Building further understanding in this area may help guide
species choices when planning for restoration outcomes [111].

(c) Biases and gaps in our understanding of restoration
outcomes

The monitoring of over 200 000 seedlings represents a vast
logistical effort by the original research teams, and the syn-
thesis has allowed us to identify some high-level systematic
effects. Nonetheless, our synthesis may suffer from several
sources of bias. Firstly, we observed relatively lowaveragemor-
tality in the first 2 years after planting—closely monitored sites
with the intention of reporting or scientific publishing may
have had more tightly controlled conditions which might not
apply in large-scale reforestation projects or those with less
thorough monitoring. A recent review revealed that while
organizations engaged in tree planting have increased by
288% in the last three decades, only 5% of project websites
and reports mentioned monitoring [11]. Furthermore, only
sites with sufficiently high survival will continue to be moni-
tored over longer timescales—this combined with often-
limited financial support for long-term remeasurement
means that sample sizes of sites measured for over 10 years
are low and almost certainly biased. While some data from
unpublished sources and the grey literature were included in
our database, evidence assembled from published literature
may be biased in favour of sites displaying higher survival.
Two studies in our synthesis reported survival rates after cata-
strophic fires [112,113], while one experimental site within the
FOR-RESTOR network suffered significant mortality after the
survival rates were published [40]. A few studies did report
incidences where species or sites were not measured because
they displayed unusually high mortality rates, for example,
due to disturbance by animals [114,115] weeds [116], or
unknown/unreported causes [117–120]. Ultimately, we
expect our estimates are biased and perhaps better reflect restor-
ation potential than a realistic average of all restoration projects
being undertaken across a range of sectors.

Our study largely focuses on the environmental and eco-
logical controls on restoration outcomes, but governance,
tenure and land-use likely contribute to the differences we
observed among sites, and perhaps systematically so among
habitat condition classes. Areas with an existing forest
canopy are more likely to be owned or managed by a state
forest service, and be remote from human settlements, than
areas that lack a tree canopy. Forested areas may suffer less
from encroaching domestic animals and spill-over fires from
cultivated land than areas that are fully deforested; conversely
local communities can form networks to protect land. Restor-
ation practitioners more frequently reported social factors as
important to restoration longevity that ecological factors
[121] but these contextual factors are less frequently reported.

(d) Community-level restoration outcomes
Data on whole-community responses were spatially sparse,
covering just 11 landscapes and ca 90 ha in area, with studies
taking different approaches to assessing restoration impacts.
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The findings indicate that active restoration through tree plant-
ing can be beneficial to increasing the speed at which basal area
recovers in degraded forests (figure 4c) and in approaching the
biomass and basal area found in neighbouring old growth for-
ests (figure 4d ). This supports the findings published by [82]
who found that actively restored forests in Sabah gained 50%
more above-ground carbon per hectare per year than naturally
regenerating forests over the course of a decade. Despite these
findings, we did not detect a significant difference between the
basal area and above-ground carbon of actively restored and
naturally regenerating forests directly; we attribute this to the
fact all analyses have relatively low sample sizes and are sensi-
tive to the particular mixture of sites, indicating the need for
more evidence. Added to this, restoration projects are not
often established as strict ‘experiments’ and thus there may
be factors such as level of degradation and level of intervention
that are not true paired comparisons, making it difficult to
partition the effect of restoration treatment.

The differences in above-ground carbon accumulation
and basal area increment we found between planted and
naturally regenerating areas were less pronounced than
differences in wood volume change presented by Shoo et al.
[122] in Australia, possibly because the Australian sites
were recovering from clearance whereas many sites in our
comparison were regenerating after selective logging (eight
of 11 landscapes). The effects of active restoration in degraded
forests (when compared with open areas) may be more subtle
because natural regeneration is supported in untreated areas
by remaining mature trees. We did not have the power to test
for habitat condition effects but we did observe variation
between studies within our own dataset, for example, the
plots in Western Ghats [123] had especially positive
responses to active restoration and we hypothesize this may
result from the sites being in isolated fragments in an agricul-
tural setting with the invasive shrub Lantana camara present;
both of these factors may be reducing natural regeneration
in the degraded forest, meaning that active restoration has a
disproportionate effect on forest recovery [96].

Our synthesis focused on the role of tree planting in deli-
vering biomass and tree biodiversity recovery, driven by the
availability of comparable data. Other interventions may be
effective in accelerating forest recovery, particularly in less
disturbed forests, for example, weed and climber cutting
[124,125] and thinning of dominant or early successional
species [126,127], applied alone or in combination with plant-
ing. In some of the studies we compiled, tree planting was
undertaken concurrently with other restoration activities; it
is therefore difficult to tease apart which treatment had the
greatest effect, or the ways in which they may be complemen-
tary, creating conditions conducive to germination and tree-
seedling establishment. Controlled experiments that compare
restoration techniques are needed, implemented over a wide
range of forest types and environmental conditions, to ident-
ify the circumstances under which each intervention method
would be most effective (e.g. [15,59]). While we did not detect
strong effects of restoration on tree species richness, we advo-
cate further research on changes in species composition and
distributional or functional attributes of species that recover
or fail to recruit under different restoration treatments.

The ability to look in greater depth at differences between
silvicultural treatments through time would be beneficial (e.g.
[122])—are differences in structure and biodiversity related to
restoration approach maintained over long timescales or
do naturally regenerating sites ‘catch up’? Evidence suggests
that naturally regenerating forests can recover their structure
after about six decades [128,129] but there are risks to natural
regeneration if ecological or socio-political barriers persist or
protection is lacking [130,131]. Landscape-level factors (e.g.
distances to natural forest remnants) are likely to be influen-
tial in determining the extent to which natural regeneration is
viable [36,132].
5. Conclusion and recommendations
Our synthesis has identified that: (i) the outcomes of tree
planting are highly variable, but planting is a comparatively
costly approach to restoration, so we must improve the
understanding of ‘permanence drivers’ and assess the cost–
benefits of different restoration interventions in different
landscape contexts. Ecological and social drivers of success
are typically studied in isolation, while in reality an inte-
grated assessment of the socioecological context is required
to inform restoration outcomes [133]. The uncertainty in
planting outcomes also emphasizes the critical value of pro-
tecting remaining functionally intact forests. (ii) Restoration
outcomes are context-dependent, related to site conditions
and species choices. Improved capture of quantitative data
on baseline environmental and vegetation conditions (includ-
ing competing floristic elements) and regular measurements
will help elucidate drivers of restoration success more
thoroughly. This requires valuing, involving and strengthen-
ing local knowledge. (iii) Species richness of plantings were
generally low, which may affect future forest function. Bar-
riers to incorporating greater diversity in plantings should
be explored and addressed. (iv) Our synthesis showed that
average seedling mortality increased by ca 30% between
2 and 5–10 years post-planting, but few sites were monitored
to this point. Greater financial and institutional support for
long-term monitoring and reporting of large-scale mortality
events and their causes (environmental and anthropogenic)
are needed [133]. (v) The main evidence gaps for tropical
and subtropical Asia concern the relative success of natural
regeneration, responses to restoration interventions at the
scale of whole community and data from experiments with
well-designed controls. This new research should address
the relative roles of different restoration methods, how trajec-
tories evolve over time and how different taxa may be
affected. To improve our collective understanding of restor-
ation outcomes, we advocate improved practices and
institutional and financial support for collecting and sharing
restoration evidence [134]. We hope to contribute to this with
our growing FOR-RESTOR network (www.ceh.ac.uk/our-
science/projects/for-restor), an Asian regional hub for collab-
oration, information and data sharing, for archiving
experience and disseminating good practice.
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