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ABSTRACT

Monitoring forest restoration is essential for improving and advancing
restoration techniques, but human-based monitoring is costly as it requires intensive
labour in the field. Although aerial images from unmanned aerial vehicles (UAVs) could
potentially replace labour, aerial monitoring of newly planted trees is challenging because
of small tree sizes, especially during the planting and initial growing stage. This research
developed and tested an aerial technique to monitor survival and growth of young trees,
which were planted to restore an open-cast mine. A quadcopter with 20-megapixel RBG
camera was used to capture tree growth in the planted sites from 10 m above ground,
every 3 months over the first year after planting. Tree variables, derived from
photogrammetry (orthomosaic images and 3D point cloud software) were compared with
conventional ground-survey measurements. Three photogrammetric software tools for
this purpose were compared, DroneDeploy outperformed trial versions of 2 other
software in terms of producing 3D point clouds and preliminary manual sapling height
measurements. It therefore was used to perform the study. Orthomosaic images and 3D
point clouds were able to detect rates of survival saplings up to 85% and 64 %,
respectively. Tree-height measurements from imagery correlated well with ground-
survey measurements (R? = 0.57, P< 0.001) with a moderate correlation, while crown
area measurements (both methods) correlated with image-based measurement (R? = 0.62
and 0.68, P< 0.001), after the trees had been growing 1 year. Correlation of tree root-
collar diameter predictions from image-based height was low (R? = 0.36, P< 0.001), after

the trees had been growing 9 months. Reliability of tree detection and measurements
vi



increased during the second rainy season after planting, when most of the trees had grown
taller than 0.8 meters. At present, monitoring progress of newly planted trees is more
accurate by ground than by drone surveys. However, the study showed increased
correlation of drone surveys after 1 year’s growth. The study shows that seasonality,
species traits, appropriate age and size of the target saplings all need to be considered
during development of appropriate aerial-based techniques, to monitor the progress of
forest ecosystem restoration sites of greater complexity. Differences between drone-
acquired and ground data, when ranking species by relative performance index were
large. Improvements in the collection and analysis of image-derived data will be needed,
before aerial base species-selection decision making becomes reliable, particularly
application of Al technologies to replace manual measurements. However, once such
developments are achieved, it is likely that image-based methods to monitor saplings in

the early stages of forest restoration will become a viable alternative to ground surveys.
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CHAPTER 1

Introduction and Literature Review

1.1 Background and Rational

Deforestation is a damaging form of long-term land-use change (FAO, 2020)
resulting in resource depletion at the landscape level, diminished ecological functioning
(Picchio et al., 2020; Kyere-Boateng & Marek, 2021), biodiversity loss and contributing
towards global climate change (Yaduv etal., 2018; Kyere-Boateng & Marek, 2021). From
2015 to 2020, the rate of natural forest declined was estimated at 10 million hectares per
year (FAO, 2020), with remaining forest unequally distributed around the globe (FAO
and UNEP, 2020). Deforestation has resulted in fluctuations in rainfall and increased dry-
season length and drought frequency (Boulton et al., 2022). Over 3 billion people and
30% of Earth's arable land are affected by the critical problem of land degradation.
Consequently, nationally determined forest restoration measures are needed

(https://www.bonnchallenge.org/).

Over the past decade, awareness of such environmental problems has grown,
as the impact of development on nature and human life becomes more apparent (Gann et
al., 2019). Forest restoration is one method to counteract continued forest ecosystem
destruction and degradation (Picchio et al., 2020; Brudvig, 2011). At the global level, the
Bonn Challenge aims to restore 150 million hectares of damaged and deforested
landscapes by 2020 and 350 million hectares by 2030 (https://www.bonnchallenge.org/).
Currently, 74 pledges from 61 countries amount to an intention to restore 210.12 million

hectares of degraded and deforested lands (https://www.bonnchallenge.org/progress).

Tree planting is advocated to address a range of degrees of degradation
(Sasaki et al., 2011), because it accelerates biomass accumulation and provides wildlife

habitat (Omeja et al., 2016). After tree planting, two important questions are how many
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of the planted trees survive and how fast do they grow? Therefore, monitoring the survival
and growth of both planted and natural trees is essential, to evaluate the success of
restoration projects (Dash et al., 2017). However, planted tree saplings are small at the
initial stage of restoration and skilled labor is required to monitor them by hand—a time
consuming process. Therefore, techniques advanced techniques to reduce time and laboru

requirements of restoration monitoring are needed (Fujimoto et al., 2019).

Drone can fly close to monitored objects and capture high-resolution images
(Yue et al., 2015). The application of such technologies is feasible to rapidly monitor
individual saplings. Therefore, drones may become an efficient alternative to ground-
based monitoring (Yao et al., 2019). However, research is needed to develop the potential

of drones and to identify limitations associated with their use.

1.2 Monitoring of Implemented Forest Restoration

Forest restoration is likely to be the only long-term option to meet the growing
demand for ecosystem services offered by forests, particularly the many provisioning
services from forests, as many people strongly rely on forests for livelihoods and
products. As a result, restoration is an important approach that can help promote
biodiversity in human-affected ecosystems whilst also mitigating the effects of climate
change (Aerts & Honnay, 2011). After forest restoration projects have been implemented,
adequate monitoring is essential but is also often overlooked. It is necessary not only to
collect data on tree survival and growth, but also to learn from past successes and failures
to modify future practices. However, at the start of restoration, planted tree saplings (and
most of the naturally regenerating ones) are small and extremely wvulnerable to
competition with herbaceous weeds and pests etc. Degraded areas are harsh
environments, leading to high mortality of planted trees, if they are not given proper care
and protection during the first two years after planting. This results in wasted effort. The
time and supplies needed to guarantee that newly planted trees thrive are frequently
underestimated (Elliott et al., 2020). Monitoring is essential, but it is also challenging
(Buters et al., 2019a).



Monitoring methods must be adaptable to site conditions, such as substrate,
vegetation, topography, and geology (Moreno-de las Heras et al., 2008) and may vary
with restoration objectives. Consequently, the specific objectives of monitoring must be
clearly defined from the start; baseline data collected, and subsequent data collection
scheduled at appropriate intervals (significant time) thereafter, and compared with control
plots (Buters et al., 2019b). A crucial requirement is sufficient labor needed to collect
data on the progress of planted trees performance (Dash et al., 2017). In conventional
monitoring, the variables of interest include basic counts of live and dead trees, as well
as measurements of sapling growth such as tree height, girth at breast height (GBH),
and/or root collar diameter (RCD), and crown width. Recording the state of planted trees
(assigning a health score or making notes about any unique health problems found) would
be beneficial for a more thorough assessment of tree growth (Elliott et al., 2020). All
variables are measured by hand during ground surveys (Figure 1), in sample plots (usually
circular plots 10 m in diameter), with results extrapolated to provide an estimate (usually

with large error limits) across the entire site (Anderson & Gaston, 2013).

Workers work in pairs, with one taking measurements and the other entering
data; one pair can gather data on up to 400 trees each day. In Northern Thailand, two
people are required to monitor approximately 500 saplings per day (~an area of 40 x 40m)
(Elliott et al., 2020). Measurements are made 1-2 weeks after planting, to provide a
baseline for growth calculations and to check for immediate post-planting mortality, due
to transplantation shock or rough handling during planting. After that, monitoring is
performed annually at the end of each rainy season. The most critical monitoring event
occurs at the conclusion of the second rainy season after planting (or after 18 months),
when field performance data may be utilized to measure each tree species' suitability for
the existing site conditions (Elliott et al., 2020). Nevertheless, the availability of skilled
labor can be limiting, for identifying saplings individually and monitoring saplings
frequently. The work is time-consuming and can be extremely difficult in dense
vegetation communities and on exposed harsh conditions or rough terrain such as that of
open cast mines. This has led to an urgent need for the application of reliable technologies
to provide restoration researchers with rapid and scalable plant-based monitoring



solutions (Buters et al., 2019a). Data acquisition via technologies is therefore an attractive
alternative (Yao et al., 2019).

Figure 1 Monitoring by hand: measuring tree height and root collar diameter.

1.3 Potential of Unmanned Aerial Vehicles to Monitor Forests

The choice of remote-sensing platforms and sensors is dependent on the
specific spatial and temporal scales of the research (Reis et al., 2019; Torresan et al.,
2017) and the researchers should select a platform that is not only capable of attaining
project objectives but is also labor- and cost-efficient (Miranda et al., 2020; Tahar, 2015).
Many studies employ remote sensing to analyze a process, an object, or a phenomenon
without having to be physically present, thus having a negligible impact upon ecologically
sensitive areas or species of interest. Researchers can use remote sensing to evaluate and
survey areas that are otherwise inaccessible or where trespassing is prohibited. Remote
sensing measures reflected and emitted radiation at a distance—frequency, and
wavelength. Among the numerous technologies used for remote sensing, unmanned aerial
vehicles (UAVSs); one type of remote sensing technology besides aircraft and satellites;
can fly without the need for a human pilot. UAVS can traverse large areas rapidly and are



unaffected by the difficulty of the terrain. Forest monitoring at the landscape level has
progressed greatly since the introduction of UAVs. They can collect large numbers of
high-resolution images even during short flights, allowing researchers to conduct virtual
site surveys over large areas (Johansen et al., 2019). Since they can fly close to surveyed
objects, UAVs provide the most flexible data-acquisition platform and the highest
imaging resolution (Yue et al., 2015). Consequently, data from UAVs allow for the
characterization and quantification of the different phases of forest degradation in

unprecedented detail. UAVs are efficient for monitoring small objects or even

distinguishing trees from complex backgrounds (Berni et al., 2009; Buters et al., 2019a).

Figure 2 Technology for data collection; ground-based methods (left), and aerial-based
method (right) (Heliguy, 2022).

The cost and availability of UAVs have been significant barriers to their use
in research initiatives in the past. However, costs are coming down and UAVs are
relatively inexpensive, when compared to manned aircraft or satellites (Ogden, 2013).
Most UAVs are equipped with common optical sensors, factory-standard digital Red-
Green-Blue (RGB) cameras carried by most commercial UAVS, sensors also include
multispectral and hyperspectral cameras, thermal imaging, and light detection and
ranging (Lidar) units. RGB cameras are viable options for obtaining several kinds of
forest information such as vegetation maps, canopy maps, height maps, biomass
estimation, invasive weed mapping, forest structural and property measurement, etc. In
addition, the use of RGB images is cheaper than the lidar itself (Grenzdorffer et al., 2008).
Other sensors such as multispectral and hyperspectral produce imagery with even more

detail for land-use classification, disease detection, and identification, water status
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estimation, forest fire detection, and monitoring or even wildlife detection and
identification (Frame & Garzon-Lopez, 2020; Fromm et al., 2019; Padua et al., 2017,
Gatziolis et al., 2015; Shimizu et al., 2014), but they are also more expensive than RBG
cameras and interpretation of their data requires advanced software, with steep learning
curves. Consequently, their use in native species' ecological recovery monitoring has been

limited.

COST (IN THOUSANDS)

methods

Figure 3 Comparison of costs for the same site (US$ thousands) between ground-based
methods (gray bar), and aerial-based method (color bar) (DroneDeploy, 2022)

Figure 4 Additional UAV-mounted sensors; Multispectral camera, Thermal camera,
and Dual camera and Lidar (from left to right).

A particularly attractive feature of UAV imagery is the potential to stitch
adjacent images together to produce 3D forest models, using structure-from-motion
(SfM) photogrammetry (Lindberg and Holmgren, 2017). Soft-copy triangulation and
image-based terrain extraction techniques have greatly improved the quality of terrain
data that can be extracted from overlapping images. UAV imagery can provide several

kinds of output, including orthomosaic images, 3D point cloud models, elevation models,
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digital terrain models (DTM), digital surface models (DSM), and canopy height models
(CHM) (zhang et al., 2015). Some of these outputs can be integrated, to increase
classification correlation and perform accurate and precise object interpretation and

classification, scene analysis, and change detection (Yao et al., 2019).
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Figure 5 Examples of generated orthomosaic images, DSM, DTM and CHM from the
UAYV imagery for tree-damage detection (Klein Hentz & Strager, 2018).

Therefore, the use of UAVSs has improved the efficiency of forest monitoring
and has been widely used to monitor not only vegetation but also ecological change (Aerts
& Honnay, 2011). Relatively cheap operating costs and fewer infrastructure needs
(compared with conventional aircraft or satellites) result in accessible and cost-effective
data collection with significantly greater spatial resolution. It is also useful for long-term
dynamic vegetation monitoring when compared to traditional forest monitoring. Potential
limits on the feasibility of UAVs in ecological restoration monitoring must be studied,
and ways to reduce them must be investigated in order to maximize the quality, reliability,
and comparability of data provided (Itkin et al., 2016; Buters et al., 2019b).



1.4 Using UAVs to Monitor Young Planted Trees

Nonetheless, using UAV technology, to monitor the early stages of forest
restoration, is particularly difficult, because the saplings are small, weeds may appear
similar to the saplings or obscure them with a high reflectance, and the fact that they may
be hidden beneath a canopy of herbaceous weeds. Another difficulty is due to small
changes in leaf reflectance during the day, which can affect image recognition (Mahlein
et al., 2013). Furthermore, Nebiker et al. (2008) suggest that lack of near-infrared

detection by RBG cameras may limit their use for identifying or monitoring small trees.

Processing technologies such as object-based image analysis (OBIA), can
detect distinct spectral signatures to accurately differentiate between target and non-target
vegetation. The ability of UAV-based monitoring to undertake performance monitoring
of individual plants at extremely fine spatial scales has been shown by accurately tracking
individual target objects across time using OBIA classification from acquired imagery.
Individual treetops can also be described using segmentation imaging techniques, which
combine spectral information and digital surface models. Accurate OBIA requires use of
multi-spectral cameras to detect distinct spectral signatures. In fact, using multispectral
images with classification algorithms significantly improves individual target-plant
recognition. However, even multi-spectral sensors could not provide enough information
to fully understand every component of observed plant performance. Therefore, more
advanced sensors, such as thermal and hyperspectral sensors, are likely to improve this
capacity, although they are currently three to twelve times more expensive than multi-
spectral cameras (Buters et al., 2019c). Chisholm and Swinfield (2020) added that using
UAYV images to assess regeneration is tough; only lidar can be used to directly measure
understory features. When small saplings growth beneath the forest understory, UAV-
mounted lidar technology allows for below-canopy measurements to be taken while
flying above the canopy or between the trees within the forest, although such technologies
are costly than RBG cameras.

When monitoring goals necessitate the identification of small characteristics
of interest, a high spatial resolution, additional sensors other than the custom camera are

required (Buters et al., 2019c). At the same time, monitoring of several characteristics of
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these young regenerants, greater volumes of data will be collected, making imagery

classification a more difficult task (Buters et al., 2019b)
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Figure 6 Examples of sapling monitoring (Lupinus angustifolia, red polygons indicate
the outline of target sapling), captured from the RGB images (top row) and multispectral

(bottom row).

1.5 Using UAVs to Monitor Restoration Project in Mine Area

Most governments recognize the necessity for post-mining restoration and
have enacted legislation requiring mining corporations to meet certain requirements for
restored landforms, topsoil, flora and water quality (McKenna et al., 2020). Ecological
monitoring is the most typical technique for mining corporations to show restoration
achievement and give assurance for mine closure. Restoration starts with landscapes
made up of isolated vegetation patches at various phases of development, with underlying
soil quality and terrain topography varying substantially over short distances, compared
with unmined land. Furthermore, restoration managers frequently change inputs like seed
mixes, topsoil depth and site preparation processes, resulting in significant levels of
spectral variation within and between patches on post-mining landscapes. Several studies
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demonstrate that multi-temporal assessment of mine restoration sites is required, to

determine their eligibility for relinquishment. (Erskine & Fletcher, 2013)

The International Society for Ecological Restoration (SER) has created a
“ecological recovery wheel” monitoring tool, to assist restoration initiatives and quantify
recovery paths in comparison with native ecosystems. By focusing on the important
indicators of restoration: structural diversity, species composition, physical conditions,
external exchanges, ecosystem functioning and the absence of threats, this tool assists in
defining the qualities and sub-attributes that are required to identify successful ecosystem
recovery (Gann et al., 2019). Monitoring ecological recovery programs, such as
ecological restoration, is critical to ensure that predetermined targets are accomplished
and to inform adaptive management where trajectories are unsatisfactory. It is a
complicated process, which involves extensive planning, precise and focused on-the-
ground efforts, and precise subsequent monitoring and adaptive management over lengthy
time periods. With increasing spatial and temporal scales of ecological recovery projects,
the demand for more rapid and accurate techniques of predicting restoration trajectory is
growing. With many mining operations being in remote areas, post-mine landforms are
frequently steep, unstable, or dangerous to walk across (e.g., waste rock landforms and
tailings storage facilities). When viewed from above, modern mines are recognized by
open cut pits, waste rock dumps, tailings dams, water storage ponds, access roads, milling
and processing facilities, infrastructure (e.g., worker housing). Such characteristics are
difficult to monitor on the ground, but their environmental impacts can be seen clearly in

aerial images (Buters et al., 2019c).

Over the last decade, the amount of ecologically focused remote sensing
studies on mine site restoration has gradually expanded (Buters et al., 2019b; Park &
Choi, 2020). UAV-based sensors have enabled researchers to gain better knowledge of
vegetation development during post-mining restoration. UAVs offer an effective
monitoring solution for these landforms, on which restoration or ecological restoration
are frequently regulatory requirements because UAVSs can access areas not accessible by
foot. Furthermore, the use of UAVs avoids trampling of regenerating plant communities.
It also avoids human exposure to hazardous conditions. UAV technology has made it
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possible to visualize, map, and monitor mining impacts and landscape recovery for the
mining sector all over the world. UAV data can be used to map restoration success and
generate evidence of meeting restoration site requirements at various scales. (Johansen et
al., 2019). UAVs can be used to infer useful ecological information over recovering
landscapes with specific spectral, temporal, and spatial patterns. For example, progressive
restoration creates patchworks of distinct age-classes, which can be examined with a
single image, to create change trajectories of ecological metrics like vegetation cover,
woody density, and species richness. A field-based understanding of establishment age,
site preparation techniques, seeding mixtures, and reflectance values is also necessary for
the application of UAVs to monitor the restoration site. However, using UAVs
may ignore the significance of preferred plant species, the absence of weeds, and the
structural elements of developing ecosystems, all of which are required to accomplish the
desired landscape recovery traits (McKenna et al., 2020). The focus of studies on spatial
mosaics demonstrates the need for better knowledge of UAVs’ capacity to monitor
restoration performance. Therefore, further investigations of the capacity of UAV to assist

with restoration projects are necessary (Chen et al., 2018).

Due to high levels of disturbance, post-mining restoration differs from non-
mining restoration operations. The use of UAVs to monitor restoration in mine areas also
differs from non-mining areas. Moreover, interpreting analysis outputs and extracting
relevant results from UAV assessments of mine site restoration requires a high level of
knowledge and experience. Automated mapping can be used in a variety of mine
restoration scenarios, as they are not site-specific and can thus be extended to different
locations and situations. However, it is crucial that UAV images of maximum quality are
acquired to maximize the quality of structure-from-motion derived DSMs, allowing
accurate tree, shrub, and grass discrimination, based on height information (Johansen et
al., 2019).

New approaches to the use of UAVs for restoration are needed to make use
of recent technical breakthroughs and improvements in our understanding of restoration.
Moving beyond traditional land cover evaluations and adopting standardized
methodologies, to measure a variety of ecological variables, as defined by SER
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International standards, has tremendous potential. These opportunities could occur as a
result of the creation of tools to assist restoration practitioners and regulators, such as
methods to quantify long-term success, such as resistance to climate change and

stochastic events, or methods to measure short-term achievement of success criteria.

Therefore, the study reported in this thesis investigated the potential and
limitations of an UAV-based protocol, to monitor the early stage of forest restoration on

and open-pit mine.

1.6 Research Objectives:

1.  Todevelop arapid aerial-based technique to monitor young saplings, planted
for open-cast mine restoration, which minimizes labor input whilst meeting
required industry standards.

2.  To determine what sapling variables can be quantified directly from low-
altitude UAV imagery.

3. To compare ground-based and aerial-image-based measurements of survival,
growth and crown expansion of young trees planted for restoration of an

open-cast mine.

1.7 Scope and Limitations:

1. This was a proof-of-concept study, to determine what can be achieved in terms
of monitoring survival and growth of recently planted saplings, under ideal
visibility conditions, using currently available technologies.

2. Its scope was restricted to clearly quantifiable variables (height, crown size etc.),
rather than subjective variable (e.g., health score).

3. Its scope was restricted to a mine site, where saplings (from recently planted to
1 year old) were easily visible against the plain background of mine substate.

4. Its scope of the study was restricted to manual measurements on orthophotos and
3D models, using tools within photogrammetric software (by single operator),
compared with the same field measurements (i.e., use of Al to perform

measurements within images was excluded).
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CHAPTER 2

Study Site and General Methods

2.1 Study Site

The Siam Cement Public Company Limited (SCG) limestone quarry, with a
total concession area of 12.144 km? (7,590 rai) Chae Hom district, Lampang province
(18°32'41.7"N 99°34'11.4"E; elevation 423 m) (Figure 7). It is the first Semi-Open Cut
Mine in northern Thailand and the company’s fifth limestone quarry. Open-cut mining
effectively removes mountain peaks, whereas mines on flat areas (open-pit mining) create
deep depressions in the landscape. Semi open cut mining (the innovative technique of the
SCG, Thailand) combines these 2 techniques. SCG has been open for operation since
1996, with a production capacity of 2.4 million tons per year. The study was conducted
in a forest restoration area (initiated post-mining in the year 2020) covering a total area

of 5 rai, in the 1st phase pit during as it was being decommissioned.

P Study Site (plot year 2020)

Figure 7 The limestone quarry is located in The Siam Cement Public Company Limited

mine site (Satellite map acquired from Google Earth).
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2.1.1 Site Preparation

Before planting saplings to restore the area, additional soil was
spread across the site and bulldozed into terraces, resulting in 6 flat benches (of
various lengths/widths) (Table 1) separated by 45°-angle walls, to minimize soil
erosion (Figure 8). Along the benches, 30x30-centimeter square holes were dug
randomly (i.e., not in straight lines, spacing range approximately 1-3 m. apart;
averaging 1.9 m apart). The polymer was placed at the bottom of each hole (to

increase the substrate’s water-holding capacity) along with manure.

Table 1 Average width and total length of the benches within the study site

Bench Order  Average Width (m) Length(m)

15t 8.01 123.38
271 5.67 120.89
3rd 5.79 11451
4t 5.04 102.57
5th 6.78 100.14
6t 5.23 96.67

Figure 8 The forest restoration area plot year 2019 (left-handed side with 1 year planted

saplings) and year 2020 (right-handed side without any sapling before planting date).
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2.1.2 Planted Saplings

A total of 1,303 saplings of 30 species of native trees, representative
of the reference forest ecosystem (bamboo deciduous forest sensu Maxwell and
Elliott, 2001), were included in the study. SCG staff collected the fruits of each
species in the appropriate season and germinated them in the on-site tree nursery.
Saplings were grown in the nursery for 8-18 months (depending on species) until
they had well-developed root systems. They varied in height (depending on
species) from 10 to 40 cm. Saplings were hardened off, with reduced watering
and increased exposure to direct sunlight, for at least 4 weeks before planting.
Seven days before the planting date, the nursery staff cut off half of the sapling
leaves to reduce transplantation shock. Individual saplings were then labeled for
monitoring, using soft aluminum strips (of the type used to bind electrical
cables). Code numbers were species codes followed by consecutive numbers for
each species: e.g., SO1_01, S24 01, etc. (Table 2).

2.1.3 Planting Method

Saplings were randomly assigned to planting holes) and planted on
August 20", 2020, by SCG and the Forest Restoration Research Unit (FORRU)
staff. The rows followed a zigzag pattern (not straight) to create a more natural
looking forest. The number of rows differed among the benches due to variability
on bench width. Average distance between adjacent saplings was slightly more
than that recommended by FORRU (>1.8 meters apart). SCG staff will continue
to monitor this plot for the first 3 years (first 2 rainy season following procedure
of FORRU method). In addition, mine officers were appointed to prevent and

watch out for forest fires and landslides.
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Table 2 Native species of planted saplings in restoration plot year 2020 as the total

number 1,298 saplings.

n'a;blfér ﬁﬁﬂg;gr Thai Name Species Deﬁ':g’ﬁ“s
S01 1-50 4o Gmelina arborea Roxb. v
S24 1-50 ugnonih Spondias pinnata (L.f.) Kurz v
S06 1-50 uzvmifon Phyllanthus emblica L. v
S07 1-50 HERATHIR Afzelia xylocarpa (Kurz) Craib v
S08 1-50 auoiian Terminalia bellirica (Gaertn.) Roxb. v
S09 1-30 in Tectona grandis L.f. v
S11 1-50 d@ornenuas, wela  Bauhinia purpurea L. v
S26 1-63 nany (finda) Albizia lebbeck (L.) Benth. v
Protium serratum
530 1-63 J/=x@ (Wall. ex Colebr.) Engl. priefly”
S34 1-50 wgnonmAoY Canarium subulatum Guillaumin v
S36 1-50 sz Pterocarpus macrocarpus Kurz v
S39 1-50 ua Xylia xylocarpa (Roxb.) Taub. v
S40 1-10 nazlau, Yo Careya arborea Roxb. v
S43 1-50  azah Garuga pinnata Roxb. v
S45 1-50 ouiu Acrocarpus fraxinifolius Arn. v
S46 1-10 WTN; Erythrina stricta Roxb. v
NOUADUN
S49 1-50 o Sterculia pexa Pierre. v
S50 1-30 5a Shorea siamensis Miq. v
S60 1-50 AN Holoptelea grandis (Hutch.) Mildbr. v
S65 1-50  agado,uzlin Schleichera oleosa (Lour.) Merr. v
S66 1-50 wm Oroxylum indicum (L.) Kurz Semi*
s67 150 o Dip_terocarpu_s obtusifolius v
Teijsm. ex Miqg.
S69 1-50 i@ Bauhinia variegata L. 4
HANNAN Fernandoa adenophylla
S70 9% (undin) (Wall. ex G.Don) Fét?alenis Y
S71 1-40 ugHIA Artocarpus lacucha Buch. -Ham. v
S72 1-50 g, wziu Aegle marmelos (L.) Corréa v
S79 1-10 nszijuiin Mitragyna rotundifolia (Roxb.) Kuntze Semi*
S80 1-50 B, Tum Bombax ceiba L. v
S81 1-30 o Vitex canescens Kurz 4
S82 1-30 nsgfy, duriae Breonia chinensis (Lam.) Capuron v

Note: “semi” and “briefly” in the category deciduous habit means that species may lose their
foliage for a short period of time before it spring flushing (Elliott et al., 2006).
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2.2 Data Acquisition

2.2.1 Ground-based Survey
1) Required Variables

Variables of interest were individual sapling height (measured
from the root collar to the uppermost meristem), crown dimensions (longest
dimension (length) and width perpendicular to length direction), and root
collar diameter (where the stem joined the root). The height of the stem of
each sapling was measured from the soil surface to the shoot meristem
(Wangpakapattanawong & Elliott, 2008). Such measurements were used as
ground-truth data to compare variable correlations among software programs
(in Chapter 3) and image-based measurement via highest performance
software (in Chapter 4). In addition, the health score and weed cover score
were recorded, for later individual sapling verification (both on a variable
scale ranging from 0 to 3). These variables were measured for all sampled
saplings within the restoration plot and recorded against each sapling’s label
code. In addition, the position of all saplings was mapped, to help with the
detection of missed or dead saplings, and to clarify whether unclear bushy
crowns were saplings or weeds. Survival was defined as the number of live
saplings, detected during each data-collection event, expressed as a
percentage of the number planted (equation 1). To identify whether saplings
were dead or alive, all unhealthy saplings were checked by scratching their
stem to check for green tissue. If the saplings still have green tissue, they are
assigned a low health score. The scoring systems were as follows: for health:
score 0 —sapling appeared dead; score 1 — sapling in poor condition (few,
discolored leaves, insect damage, and so on.); score 2 — saplings slightly
damaged but still had mostly intact healthy foliage and score 3 — saplings in
perfect health. For weeds score, a circle around target sapling 1 meter
diameter was visualized: score 0— absence of any herbaceous plants; score
1— a few weeds growing around; score 2— approximately ¥ area covered

by weeds and score 3 score — most of the ground covered densely in weeds.
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All measurement techniques were based on Forest Restoration Research Unit
(2008).

no.detected live sapling

% survival = X 100 (Equation 1)

no.planted sapling
2) Equipment

The tools used for ground-based survey included a) 1.5 tape
measures mounted on plastic poles for sapling height and crown dimension
measurements. b) Digital calipers for root collar diameter measurements c)

40-meter tape measures for width and length of benches measurements.
2.2.2 Aerial-based Survey
1) Required Outputs

Red-Green-Blue (RGB) color spectrum images (5,472 x 3,078
pixels) were downloaded from the UAV memory card after flights. The
number of raw RGB images depended on the length of each bench and the

flight routes.
2) Equipment

The UAV used was a Phantom 4 Pro V2.0, drone-DJI (quadcopter
drone type), a smart consumer “drone” which can shoot 4K video at 60 frames
per second and capture still images at a resolution of 20 megapixels. It can
intelligently avoid obstacles during flying, due to obstacle avoidance sensors
in 5 directions (the exception is immediately above). (For full technical details
see the link: dl.djicdn.com/downloads/phantom_4_pro/Phantom+4+Pro+Pro

+Plus+User+Manual+v1.0.pdf).
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Figure 9 Phantom 4 Pro V2.0 UAV (left), landing after finishing mission by manual
catching (right), due to unstable ground surface.

3) Flight planning

The waypoint mission function of Litchi flight planner, v. 4.18.0-
g (flight planning application) was used to fly the UAV autonomously in a
grid pattern 10 m above the ground, along each bench with a velocity of 2
km/h, acquiring images every 3 seconds, resulting in > 80% overlap/side-lap.
According to the different length of the plots and limited battery duration
(maximum 20 minutes per flight time, with 3-5 minutes for taking off and
landing), individual flight missions had to be planned for each specific bench
(so totally 6 missions, Table 6). Thus, the UAV was flown, 1 flight mission
per bench (Figure 12) and repeated every 3 months. In addition, some minor
edits of missions were made after checking previously acquired images that

covered excessive areas outside of the study areas.
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Table 3 UAV flight mission settings

Mission for Flight No. of Aerial  Overlap  No. of Flight Aé’g{;%gf:fﬁgﬂfe UAV

Bench Order  Take Time Images of Image Route Routes Speed
1st 21 mins 325 83 % 4 lines 2.67m 2 km/hr
2nd 21 mins 311 88 % 4 lines 1.89m 2 km/hr
3rd 20 mins 382 88 % 4 lines 1.93 m 2 km/hr
4th 18 mins 271 90 % 4 lines 1.68 m 2 km/hr
5t 18 mins 272 86 % 4 lines 2.26 m 2 km/hr
6t 14 mins 167 89 % 3 lines* 1.74 m 2 km/hr

*NOTE: The edge of highest bench (6" bench) is close to nearby tree canopy (trees outside of
our study area), therefore, one of the flight routes was cut to avoid UAV crash.
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Figure 10 UAV waypoint mission in Litchi flight planner, for 1% bench; indicating the

above ground height of each way point; 4 route lines with different camera angles.
2.3 Image Processing and Image-based Data Measurement

2.3.1 Image Processing (Orthomosaic and 3D Point Clouds Generation)

Raw RGB images from each UAV flights mission were stitched
together using the photogrammetric software, which performs photogrammetry,
based on structure-from-motion (SfM) algorithms (Ozyesil et al., 2017), capable
of producing orthomosaic images, elevation models, 3D point cloud models
(Figure 13) and digital terrain models (DTMs). After determining the best of 3
software packages in Chapter 3, DroneDeploy was subsequently selected for all

image processing requirements. Although DroneDeploy generates all data types
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from one raw-image set, only the 3D point-cloud model was downloaded for
further data extraction (for height measurement). DroneDeploy web-based
software comes with a measurement tool, used with orthomosaic images
(corresponding with elevation model), Therefore, export of outputs for analysis
in other software packages was not needed except for sapling heights). Each
orthomosaic image had a final resolution of 0.3 inches per pixel for flights

undertaken 10 m above ground.

Figure 11 Orthomosaic image (a), elevation model (b), and 3D point cloud model (c),

example of 1% bench result from last data collection.
2.3.2 Measuring variables from Orthomosaic Image
1) Crown Dimensions

Sapling-crown dimensions were measured manually in the
orthomosaic images, utilizing the overlaid elevation model to identify sapling
crowns by 2 methods. The first method was perpendicular dimensional
measurement, which included the longest crown measurement (deemed
crown length), with the measurement perpendicular to it, deemed crown
width, using the distance tool of DroneDeploy. The measured cross lines and

other properties were displayed in the left-hand panel on of the DroneDeploy
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website interface (Figure 14) and the crown area was calculated as a sapling
assuming the crown shape was an ellipse; as equation 2). Since delineating
crown length/width was difficult (due to the small size of sapling crowns,
limited zoom capability, and differences in elevation between the ground and
sapling crowns), the crown area was measured directly; as a second method,
by placing multiple points around the visible circumference of the crown, also
using the area tool of DroneDeploy. (Figure 15). Moreover, direct-CA is
feasible to be measured in most of the available saplings rather than CA-LW.
The measuring process was conducted by the same operator each time, to
reduce the observer bias.

(Equation 2)

Crown Area = 1w X (

crown length) % (crown width)
2 2
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Figure 12 Distance measuring tool in DroneDeploy website interface; the perpendicular

line indicates the length and width of sapling crown.
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Figure 13 Area measuring tool in DroneDeploy website interface; the covered light red-

color area indicates the selected crown of the sapling
2) Number of Detected Saplings from Crown Dimensions

Detected saplings were defined as those for which crown area
measurements could be made in the orthomosaic images by CA-LW and
direct-CA. The total number of detected saplings on all 6 benches in
orthomosaic image was expressed as a percentage of those detected on the
ground (separately for CA-LW and direct-CA methods). The method which
detected the highest percentage was selected as indicative of the capability of

the orthomosaic images to detect planted saplings.
2.3.3 Measuring variables from 3D point clouds
1) Height

Sapling-height data were extracted from the 3D point cloud
models, exported from DroneDeploy website, via CloudCompare (latest
stable release: 2.11.3), open-source software for point cloud processing.
Isolated trees, clearly visible in the point cloud (not overlapping with weeds
etc.) were selected for manual height measurements, since the user could

easily determine where the highest point was. CloudCompare’s point-picking
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tool, which displays the distance between 2 selected points in 3D point cloud
models. (Figure 16). The measuring process was conducted by the same

operator each time to reduce the observer bias.
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Figure 14 Point Picking tool in CloudCompare software; the vertical line indicates the

sapling height (quantity information shown in tiny red box).
2) Number of Detected Saplings from Height

All saplings, for which height measurement was possible, were

counted as a third estimate of detection percent.
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CHAPTER 3

Comparison of Sapling Detection and Height Measurement Using
3D Point Cloud Models from Three Software Tools:

Applications in Forest Restoration?

Abstract

A challenge for forest restoration is the monitoring of its success, particularly
of sapling survivorship. Three D-point-cloud models, generated from aerial images taken
from unmanned aerial vehicles (UAVS), are useful for monitoring vegetation recovery.
However, the use of aerial images is challenging, due to the small sapling size. Many
photogrammetry software tools are available for creating 3D models, but they differ in
their performance. This research compared the ease of use, sapling detectability, and
correlation of sapling-height measurements, using 3D-point-cloud models from the free
versions of three tools: Pix4Dmapper, DroneDeploy, and WebODM. The study site was
at a forest restoration plot on an open cast limestone quarry of the Siam Cement Group
(SCG) Public Company Limited, Lampang, Thailand. The heights of 178 planted saplings
were measured manually, to provide ground-truth data. On the same day, a UAV was
used to autonomously capture RGB images, subsequently processed to produce 3D
models, using three software tools with default settings. The percentage detection and the
correlation of height measurements were compared. DroneDeploy correctly detected 42%
of the saplings, followed by Pix4Dmapper (29%) and WebODM (16%). There were a
few errors of commission: 3% detection of saplings that were not there, with
DroneDeploy and Pix4Dmapper and 1% with WebODM. Differences in sapling detection

may be due to differences in the algorithms and the default settings among the 3 software

1 Changsalak P. and Tiansawat P. (2021) Comparison of Sapling Detection and Height

Measurement Using 3D Point Cloud Models from Three Software Tools: Applications in Forest
Restoration. EnvironmentAsia Journal 2022, 15 (special issue), 100-105.
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packages. The correlation of sapling-height measurements was assessed using linear
regression against ground-truth data. All 3 software tools performed well (R-squared >

85%). The pros and cons of each software tool and its future applications are discussed.

Keywords: UAV; Photogrammetric software; Sapling monitoring; linear regression

Sapling height

3.1 Introduction

A point-cloud is a three-dimensional dataset, generated from many geo-
referenced points, produced by photogrammetry software (Lindberg and Holmgren,
2017). The raw data, used to generate 3D point clouds, can include remote sensing
imagery, such as aerial images taken from unmanned aerial vehicles (UAVSs) (Yang et al.,
2017). A collection of two-dimensional (2D) images, is converted into 3D models
combining camera motion data, with positional shifts in coincident points between
overlapping images. Overlapping aerial image sequences are analyzed using
photogrammetric techniques (Lindberg and Holmgren, 2017), such as structure-from-
motion (SfM) algorithms, to produce a 3D point cloud (Ozyesil et al., 2017). Various
photogrammetric software tools on various platforms can perform such analyses (Talib et
al., 2021), including open-source and non-open-source software with limited trial periods.
However, 3D point-cloud model outputs can vary (Westoby et al., 2012) among the
software packages. Therefore, software selection is a crucial step towards using UAVs to

monitor forest ecosystem restoration.

Remote sensing has been applied for ecological restoration monitoring in
various situations (Buters et al., 2019a). For forest restoration, monitoring the
performance of planted saplings has been a crucial step in determining progress (Dash et
al., 2017). Traditionally, monitoring sapling performance is done by hand by ground
surveys. The use of 3D point cloud models, generated from UAV aerial images, has the
potential to replace traditional ground surveys. Three-dimensional point cloud models can
speed up monitoring and lower implementation costs (Itkin et al., 2016). Several
photogrammetric software tools have been used to measure trees in 3D point cloud

models (e.g., 3DSurvey, Agisoft Photoscan, Pix4Dmapper Pro, SURE, and Autodesk
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123D, etc.) (Lindberg and Holmgren, 2017). Monitoring sapling performance with a 3D
point cloud model is challenging though, due to its small size (Buters et al., 2019a). The
question remains as to whether software tools, recommended for tree measurements can
be used for small saplings. Since cost is a crucial factor, we tested freeware versions of
the photogrammetric software. Therefore, this study compared ease of use, sapling
detection, and the correlation of sapling height measurement using 3D point cloud models
from free versions of three currently available photogrammetric software programs:
Pix4D mapper, DroneDeploy, and WebODM.

3.2 Materials and Methods

3.2.1 Study Site

Study site preparation and tree planting methods were as described
above (sections 2.1.1 - 2.1.3).

3.2.2 Data Acquisition

Data acquisition was as described in sections. 2.2.1 - 2.2.2, except
that only the variable “height” was focused on for this chapter, from data
collected on 13/6/2021 (when trees are 9 months old), from only the 1% bench
(out of 6 in the total study).

3.2.3 Software packages

Images were processed by the following 3 software packages to

generate 3D models via photogrammetry.
1) Pix4D mapper

The non-commercial version of Pix4D mapper version 4.4.12,
was applied (https://assets.ctfassets.net/go54bjdzbrgi/1GmMOUGAZIWQMS
Oewk6Kya4/816a0735dd93eafb3d912520939bebfe/Pix4Dmapper_feature_|
ist v4.6_English.pdf)
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2) DroneDeploy

The 14-day trial version of DroneDeploy (online version, 2021),
was used. It is cloud-based software that allows users to control the UAV and
take images at the required altitude. The DroneDeploy website, accessed by
a personal laptop, allows the user to upload images and automatically
generate all data types from those acquired images. The free version was
limited to 10 processing tasks or within a 14-day trial period
(help.dronedeploy.com/hc/en-us/articles/1500004861881-How-To-Process-
Datasets-Into-Maps-and-Models).

3) WebODM

The free open-source WebODM software version 2.6.2 was
applied. It is a user- friendly web interface to OpenDroneMap (ODM), with
community  support and instructions  for  free installation

(docs.webodm.org/#introduction)
3.2.4 Point Cloud Generation and Height Measuring Procedures

The same set of 333 aerial images were used to generate the point
cloud models “only once” with the three photogrammetric software tools. For
each software, default settings were used, and steps taken from tutorials provided

by the software publishers:

1. Open Pix4D mapper software — click New Project — type Project
Name — click Add Images — Image Properties as default — Auto
Detected: WGS 84/UTM zone 47N as default — select 3D Models in
the Standard of the Processing Options Template — wait for
processing,

2. Open DroneDeploy software browser — click +Project — click
Upload — type Map Name and click Select Photos — click Upload

Images — wait for processing
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3. Open WebODM software manager — open software browser — log
in account — click Add Project — type Project Name — click Select
Images and GCP — Additional Options as default — click Review

and Start Processing — wait for processing

The 3D point cloud outputs from each software were used to detect
individual saplings manually and measure their height. For sapling height, the
outputs from WebODM and DroneDeploy were exported, and the height was
measured in CloudCompare, open-source software for point cloud processing
(as mentioned in 2.3.3). For the Pix4D Mapper, height measurement was done
by calculating the distance between each sapling’s apex and the ground point

immediately beneath, directly from the software interface.
3.2.5 Output Comparison and Correlation Assessment

The properties of the 3D point cloud model outputs were recorded.
In addition, their ease of use was evaluated, based on installation, pre-processing
procedures, processing time and time spent on height measurement after
obtaining the 3D point clouds. In terms of sapling detection, the total number of
correctly detected saplings (out of 178 saplings on the ground) from each
software was counted and the percentage of correctly identified saplings was
calculated. The percentage of saplings that were not detected was reported as an
omission error (%). The percentage of objects mistakenly identified as saplings
was also calculated as commission error (%). The relationship between the
height measurements, derived from the ground-truth data (x-axis) and derived

from point-cloud models (y-axis) was tested by linear regression.

3.3 Results

3.3.1 Software Outputs and Ease of Use of Each Software

A comparison of the information relating to 3D point cloud model
properties produced for each of the three software programs is presented in Table

3. Ease of use, based on four criteria, is compared in Table 4.
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Table 4 Characteristic report of the 3D point clouds from each software. Check marks
(V) indicate “reported” while blank cells indicate “not reported” from the software

Reported information Pix4D-mapper DroneDeploy WebODM

Average ground sampling distance (GSP) v v v

Area coverage v v

Image quality v v

Matching quality v

Tie points quality v

Georeferencing quality v v v

Camera position and orientation

uncertair?ties v v v

RMS error N4 V4 N4

Rolling shutter statistics V4 V4 V4

Point cloud densification details < v v

Result preview v v v

Reporting unit within output meter feet meter
Table 5 The criteria indicate the ease of use of the three selected software.

Comparison criteria Pix4D-mapper DroneDeploy  WebODM

Complexity of software installation simple (On“ngobr;gwser) complicated*
Complexity of steps before processing moderate simple moderate
Processing time 1 hr 33 mins 32 mins 47 mins
Time spent on height measurement 1 hr 9 mins 1 hr 3 mins 19 mins

*complicated = requires installing docker, to run the software (without docker it would not be possible to
run WebODM, but it also used up internal storage).

3.3.2 Sapling Detection Percentage

Table 6 compares sapling-detection percentage, as well as errors of
omission and commission among the three software packages. DroneDeploy
performed the highest correctly detected (42%), and the lowest omission error
(58%). However, the commission error of Dronedeploy is as high as Pix4D-

mapper.
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Table 6 Percentage of saplings detected by each software.

Percentage of detection Pix4D-mapper DroneDeploy WebODM

Correctly identified 29 42 16
Omission error 71 58 84
Commission error 3 3 1

3.3.3 Correlation of Height Measurements

Height measurements from the point cloud models correlated closely
with ground-truth data (Figure 9) for all three software packages, with
DroneDeploy performing the best. Due to the difference of the number of
saplings detected by each model, the number of data points in each regression

analysis was different: Pix4D-mapper n = 51; DroneDeploy n = 75; WebODM
n=29.

2.0 (c)

O 20 (b)

R?=0.98
05 1.0 15 20 0 05 1.0 15 20

Seedling height (ground) (m)

Seedling Height (model) (m)

Figure 15 Linear regressions between the measured height from 3D models and ground
truth data (for detected saplings): (a) Pix4D mapper (n = 51), (b) DroneDeploy (n = 75)
(b) and (c) WebODM (n = 29).

In addition, we tested the linear relationship between the height data
from the point cloud models and the ground truth data for those saplings that
were correctly detected by all three software tools (n =15) (Figure 10). Again,
DroneDeploy performed the best.
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Figure 16 Linear regression between the measured height from 3D model and ground
truth data: overlapping detected saplings among three software (n = 15) from Pix4D
mapper (a), DroneDeploy (b), WebODM (c).

3.4 Discussion

For the software outputs, DroneDeploy and WebODM allow users to export
PDF reports summarizing software performance and outputs, however Pix4D-mapper
does not allow exporting and only provides the reports on a pop-up window. Although
Pix4D-mapper provided useful information in its reports, the convenience of being able
to export the reports from DroneDeploy and WebODM is significant. For ease of use,
DroneDeploy was ranked highest, followed by Pix4D-mapper, and then WebODM. In
addition, DroneDeploy took the least time and computer storage during the installation

and processing.

Sapling detection percentage showed that DroneDeploy correctly detected the
greatest number of saplings with the smallest omission error, in comparison to Pix4D-
mapper, and WebODM (Table 6). The omission errors (failures to detect saplings when
they are present) may arise from the size and health of the saplings e.g., crown not fully

projected or where deciduous saplings have lost their leaves (Dash et al., 2017).

The regressions were statistically significant and the linear relationships
between the height measurements from the ground survey and from the point cloud
models from all three software were strong (Pix4D-mapper R? = 0.90 p < .001;
DroneDeploy R? = 0.98, p < .001; WebODM R? = 0.88, p < .001). The relationship
between height measurements from the point-cloud models and the ground-truth data for

the 15 sapling individuals that were detected by all three software tools (n =15) was also
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statistically significant (Pix4D-mapper R? = 0.87, p < .001; DroneDeploy R? = 0.97,
p < .001; WebODM R2 = 0.89, p < .001;)

All software tools generated point cloud models that allowed height
measurements that were strongly related to the ground truth data. However, there were
still some errors in height measurements from the point cloud models. The free versions
of the software tools have limited features which may affect the correlation of the height
measurement. We are aware that there are commercial versions of these software tools
which provide more features. Users should investigate what features are available in each

software product to choose the appropriate software for a given task.

Differences in ease of use also set the software apart. In our study,
DroneDeploy worked well in detecting saplings using aerial images and was relatively

simple to use.

For monitoring saplings in forest restoration studies, our study shows that the
use of UAV aerial images has the potential to replace ground surveys, provided errors of
omission can be reduced. Further work that reduces such errors is clearly needed. Better
sapling detection may come from the combination of using UAVs with more powerful
cameras, developing different flight plans for different stages of restoration, investigating
further into image preprocessing steps before generating point cloud models, and

applying other advanced remote sensing equipment e.g., lidar, etc.
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CHAPTER 4

The Use of Imagery for Monitoring Sapling Survival and Growth over

Time and Correlations with Non-Visible Sapling Variables

4.1 Introduction

To monitor the progress of restoration projects, sapling survival and growth
are measured on the ground. Such monitoring is labor-intensive and, therefore, costly
(McKenna et al., 2020; Buters et al., 2019a). Although protocols for monitoring older
sites with larger trees have been widely published (Shimizu et al., 2014; Rokhmana, 2015;
Gatziolis et al., 2015; Lindberg & Holmgren, 2017; Dash et al., 2017; Piermattei et al.,
2019; Fromm et al., 2019; Talib et al., 2021), they are often not applicable for monitoring
changes in newly planted sites, especially in the opencast my restoration. The previous
chapter established the relatively high performance of DroneDeploy for detecting
surviving saplings and to generate height data from 3D point clouds. Therefore, in this
Chapter, DroneDeploy was used to i) track the survival and growth of tree saplings every
3 months over the first year after planting and ii) examine relationships between drone
and ground data for a greater range of sapling variables in orthomosaic images. To meet
established standards of sapling monitoring (Amorés & Ledesma, 2020), values of
sapling variables that cannot be directly quantified from low-altitude UAV imagery were
estimated from other acquired data via correlation. This chapter also examines whether
image-based data from an UAV can be used to generate the same species-suitability
ranking order as ground data as an aid to species selection decision making. The potential
and limitations of an aerial-based monitoring protocol, to monitor early forest restoration

on open-pit mine, is discussed.
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4.2 Materials and Methods

4.2.1 Study Site

Details of site preparation and planting methods were described in
sections 2.1.1 - 2.1.3.

4.2.2 Data Acquisition

Data acquisition was performed using methods described in sections
2.2.1-2.2.2.

Moreover, ground survival data included “not-found” trees if they
could reasonably be assumed to be alive. For example, trees that were missed or
recorded as dead in one survey but recorded as alive in a subsequent survey had
their “alive” status backdated to previous survey records. This was especially
true of deciduous species, which were leafless in the dry season and easily
missed. Some were missed, whilst others were erroneously recorded as dead.
Staff also mistook trees in poor health for dead ones, because many such trees
had no additional data recorded for them during ground surveys (especially on
11/3/2021, when sapling 6 months old), but staff recorded as alive and in good
health in subsequent surveys. The status of such trees was reclassified as “alive
not found” in the dry season and the count of alive trees at that time corrected

accordingly.
4.2.3 Image Processing and Image-based Data Measurement

DroneDeploy was employed for image processing and image-based
variable measurement (crown dimensions) as described above in sections
2.3.1-23.3.
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4.2.4 Data Analysis
1) Ground-based Variable Relationship Analysis and Utilization

Since root collar diameter (RCD) is far too small to be measured
in orthomosaic images and 3D point cloud models, it was derived via
correlation with measurable variables. Ground-based data, including sapling
height, crown area (multiplication of crown length and width of the ground
measurement; ground-CA) and root collar diameter, were subjected to linear
regression analysis (Vetter TR & Schober P., 2018) via R 4.0.3 (statistical
software). The strongest relationship between variables was chosen, based on
correlation coefficient (r) and coefficient of determination (R?), and an
equation generated from simple linear regression. Moreover, the train-test
split technique was used with the data set that had the strongest relationship,
for evaluating the performance of equations from root-mean-square-error
(RMSE). Then the generated equation was used to predict changes in the
dependent variable (RCD) for each change in the independent variable

(sapling height or CA) using image-based data.

Ground-based Data “

Height v8 RCD ———  Equation (1)
. 3 .
]m the highest R* Equation
CAvs RCD —— Equation (2)

linear regression analysis

apply equation

Figure 17 Ground-based variables relationship utilization
2) Sapling Detection
The number of surviving saplings from ground-based surveys was
compared with the sapling number acquired from the orthomosaic image and

3D point cloud model (assuming all saplings detected by each of the 3
methods were alive: height, CA-LW, and direct-CA measurement). The
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percentageection rate was the number of saplings detected in the orthomosaic
image and 3D point-cloud model as a percentage of the number found during

ground counts.

3) Correlation and Mean Percent Difference Analysis for Correlation of

Measurement Evaluation

Ground based and UAV-based variables (sapling height, crown
area, and root collar diameter) were correlated to derive R2, RMSE and mean
percent difference also via R 4.0.3. Since sapling variables data were
normally distributed, Pearson’s correlation coefficient was used to determine
the strength and direction of pairwise associations between variable pairs
(values range from 0 to 1), with 0.1 indicating weak association to >0.9
indicating strong association (Schober & Schwarte, 2018). Also, simple
regression models were constructed to quantify the closeness of correlations
by R? and RMSE. Mean percent differences (+SD) between ground-based
data and image-based data were calculated by equation 3 (for detected
surviving saplings). R?, RMSE and mean percent difference were used to
measure how much the predictions from UAV images deviate from ground-

based measurements.

Percentage Difference = ?/—V X 100 (Equation 3)

(Image—based Data)—(Ground—based Data
g ( ) % 100

Percentage Difference =
Ground—based Data

4.2.5 Relative Performance Index

The Relative Performance Index (RPI; no units) was calculated to
compare performance among tree species planted (Elliott et al., 2000; Forest
Restoration Research Unit, 2005). RPI is used to rank species in descending
order of performance based on a combination of survival and growth.
Multiplication of the standardized % survival and Relative growth rates (RGR)

provided a raw performance index (equation 4). The final index was expressed
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as a percentage of that of the top-performing species (with a maximum value of
100). Each species was then ranked in descending order of RPI, calculated both
from aerial and ground data. Such bar charts are standard practice when reporting

early results of forest restoration trials.

RGR were calculated via equation 5 for each surviving labeled
sapling from height data (Figure 27) — from 29/9/2020 to 16/9/2021. RGR
indicates an annual percentage increase in size (relative to the mean size of the
plant over the data-collection period). It controls for differences in original
sapling size (since large plants grow faster than smaller ones). An RGR of 100%
therefore indicates an annual doubling in plant size. A negative value indicates
the plant is shrinking (due to disease or being cut). A value of -100% indicates

the plant will mostly likely die within a year.

RPI (no unit) = % survial X RGR (Equation 4)

(InHeight,—In Height,)
(T, —=T1)

RGR (%/year) = X 100 x 365 (Equation 5)

where InHeight (cm) is natural logarithm of tree height and T (days)

is number of days between 2 data collection date which less than 1 year.
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4.3 Results

4.3.1 Sapling Survivorship and Detection

A total of 1,303 saplings were planted, of which 255 were omitted from
the study, because they were outside bench boundaries (and therefore excluded
from ground surveys) or because they were located on the edges of raw aerial
images (half visible). So, the study was based on a starting cohort of 1,048 saplings.
Figure 18 shows survivorship over 1 year using ground-based data (yellow bar).

Sapling detection rates in of up to 85% were achieved in drone derived
imagery. Using orthomosaic images, the direct CA method was better than the CA-
LW method for detecting and counting saplings. Use of 3D point clouds produced
poorer results (Figure 18). All image-based techniques detected more saplings as
they grew larger, exceeding 50% by nine months. The lowest detection occurred in

March when most saplings were leafless and less visible.

1000 OAlive Saplings

& Orthomosaic (CA-LW)
800 Orthomosaic (direct-CA)
m 3D Point Clouds (Height)

600

400

Number of Sapling

200

Data Collection Date

29/9/2020  10/12/2020 11/3/2021 13/6/2021 16/9/2021

Figure 18 Comparison of sapling number between ground-based data (yellow bar) and
image-based data (blue bar in 3 gradient colors) from five collection dates. The number
at the top of the bar represents the percentage of saplings detected from each measurement

image-based method.
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Using ground-based data and image-based collected on 16/9/2021, we
examined differential survival and % detection (by the 3D point cloud; height
measurement), among 17 species with 20 or more surviving individuals. The
percentage of image-based detection of those 17 cohort species on the date of last
data collection (16/9/2021) was calculated (Figure 19).

Spondias pinnata KA 58
Bombax ceiba WA 42
Garuga pinnata A 51
oroxylum indicum KA 67
Terminalia bellirica e 62
sterculia pexa s, 57
Fenandoa adenophylla Y 78
Albizia lebbeck  YAeiipii s, a7
Vitex canescens i 73
Protium serratum ¥ 57
Bauhinia variegata  weidddiiiririry 57
Holoptelea grandis 7////////////////A 64
Phyllanthus emblica  Ze%
Pterocarpus macrocarpus 7//////////A
Schleichera oleosa  YAAAApmiiiiiiiss
Canarium subulaum  HEAA
Aegle marmelos  GGAAAAS -

0 10 20 30 40 50 60 70 80 90 100
% Survival

Sapling Species

18

44

59

%survival from Ground Data ¥ %survival from Aerial Data

Figure 19 Percentage survival from ground and aerial surveys on the last data collection
(16/9/2021). The number at the end of each bar is the per cent aerial detection rate of each
species (drone-based survival as a percent of ground-based survival).
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It was expected that higher detectability of trees as time progressed was
due to increased tree size as they grew larger. However, at the species level,
relationships between detectability and both mean sapling height and sapling crown
area (by both CA-LW and direct-CA) were not significant among 17 species with
20 or more surviving individuals by September 2021 (Figure 20-21).
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Figure 20 Scatter plot between species-level mean sapling height (cm) and percentage

species-level detectability (17 species with n > 20) in September 2021
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Figure 21 Scatter plot between species-level mean sapling crown area (cm?) and
percentage species-level detectability from CA-LW (yellow dot, Rz = 0.0959) and

direct-CA (red dot, Rz = 0.0487) method in September 2021
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4.3.2 Aerial Measurements - Efficiency Over Time

Simple linear regressions were used to determine relationships between
aerial and ground measurements of directly measured variables: height, crown area
by both the length-and-width (CA-LW) and direct-crown-area (direct-CA)
methods, and of the indirectly derived variable, root collar diameter (RCD) from

predictive equation.

1) Directly Derived Variables from Aerial-based Measurement

Image-based measurements tended to underestimate sapling
height (of ground data) during the dry season (by up -1 to -14%) and
overestimate it during the rainy season (up to +19%), but the difference had
declined to just 10% by the end of the study when the saplings were largest
(Table 7). The strength of relationships between ground-based and image-
based measurements increased with time and sample size, with no significant
differences between mean height between the two methods over the whole
study (P > 0.05). The residuals between the fitted line and the data before the
dry period were normally distributed, whilst after the dry period, they were

slightly right-skewed (Figure 22).

Table 7 Comparison of mean height from ground-based data, image-based data, and

percentage of under/over-estimation.

Data Mean Height from  Mean Height from

Figure Collection Ground Data Image Data Mean Percentage R?
Session Under/over-estimate
Date (cm) (cm)
a 29/9/2020 50.90 @ + 22.69 52.78 2 +23.68 18.97 £ 94.29 0.04
b 10/12/2020 55.76 @ +30.60 53.14 2 +23.12 -1.66 + 49.67 0.17
C 11/3/2021 54.20 % +24.29 52.47 % +27.20 -14.08 + 34.01 0.53
d 13/6/2021 69.27 @ +32.84 70.52 2 +32.26 3.28 £57.83 0.54
e 16/9/2021 88.80% +51.24 92.422 +44.66 10.14 + 64.51 0.57
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Figure 22 Regression analysis against height of ground-based and image-based data from
each data collection; (a) 29/9/2020 10/12/2020 (b), 11/3/2021 (c), 13/6/2021 (d), and
16/9/2021 (e) (a-e; P < 0.05). Histogram of residuals indicates normality distribution

between the fitted line and each data collection.

Using the CA-LW method, image-based measurements

substantially overestimated crown area cf. ground data (by 65-299%), except

at the end of the study, with no discernable trend in error with time or sapling

size (Table 8). Relationships between ground-based and image-based

measurements were generally weak from the beginning of the study until the

dry period, but aerial data correlated better with ground data right after the

dry period (R?>0.57). Differences in the mean crown area among methods

were insignificant (P > 0.05). All residuals between the fitted line and the data

were not normally distributed around zero, which was slightly right skewed,

except the data on 13/6/2021, which was slightly left-skewed (Figure 23).

Table 8 Comparison of mean crown area (CA-LW) value from ground-based data, image-

based data, and percentage of under/over-estimation.

Data Mean CA-LW from  Mean CA-LW from

Flgqre Collection Ground Data Image Data Mean Percent_age 2
Session 2 2 Under/over-estimate
Date (cm?) (cm?)
a 29/9/2020 468.26 @ + 405.62 762.31° + 362.86 76.37 + 383.24 0.16
b 10/12/2020  802.31@ +836.12 1274.57" +874.11 105.17 + 600.63 0.29
c 11/3/2021  974.82@ +1326.01 1346.71° +969.09 78.34 + 328.36 0.43
d 13/6/2021  2584.072 +2995.01  3079.86° +2900.42 65.72 + 215.27 0.57
e 16/9/2021  4563.122 +7091.27  4306.60? +5145.68 299.90 + 2335.21 0.62
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Figure 23 Regression analysis against CA-LW of ground-based and image-based data
from each data collection; 29/9/2020 (a), 10/12/2020 (b), 11/3/2021 (c), 13/6/2021 (d),
and 16/9/2021 (e) (a-e; P < 0.05). Histogram of residuals indicates normality distribution

between the fitted line and each data collection.

The image-based direct-CA method overestimated crown area cf.
ground data by 13-30%, except at the beginning and at the end of the study
when the direct-CA method underestimated crown area. The error of
measurement had no discernable trend with time or sapling size (Table 9).
Relationships between ground-based and image-based measurements were
moderate from the beginning of study until dry period but became more
accurate after dry period (R?>0.60, also higher than CA-LW method).
Interestingly, mean crown area reveals no significant different among
measurement during the dry season (P > 0.05). All residuals between the fitted
line and the data were not normally distributed, which were slightly right
skewed, except the data on 13/6/2021 was slightly left skewed (Figure 24).

Table 9 Comparison of mean crown area (direct-CA) value from ground-based data,

image-based data, and percentage of under/over-estimation.

Figure Data_ Mean direct-CA Mean direct-CA Mean Percentage
Session Collection  from Ground Data  from Image Data Under/over-estimate R?
Date (cm?) (cm?)

a 29/9/2020 468.26 ® + 405.62 424.87° +287.12 -0.62 + 166.40 0.27
b 10/12/2020  802.312 +836.12 923.75" +678.94 30.41 + 320.75 0.39
C 11/3/2021  974.82@ +1326.01  1067.16% + 827.04 13.73 £ 191.07 0.44
d 13/6/2021 2584.072 +2995.01 2648.712 +2515.80 19.73 + 156.75 0.60
e 16/9/2021  4563.122 +7091.27 3817.69° +4572.63 203.67 + 1824.44 0.68
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Figure 24 Regression analysis against direct-CA of ground-based and image-based data

from each data collection; 29/9/2020 (a), 10/12/2020 (b), 11/3/2021 (c), 13/6/2021 (d),

and 16/9/2021 (e) (a-e; P < 0.05). Histogram of residuals indicates normality distribution

between the fitted line and each data collection.
2) Indirectly Derived Variable from Aerial-based Measurement

(Predicting RCD from other ground -measured variables)

Relationships between either height or CA with RCD (ground
measurements) were weak (R? < 0.5) but grew stronger with increasing
sapling age except for the relationship between CA with RCD by the end of
the study (Table 10). The strongest relationship was attained from the last
data collection date between height with RCD. Height was a slightly more
reliable predictor of RCD than CA using ground data (R?= 0.42).
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Table 10 Correlation coefficient (r) and coefficient of determination (R?) from ground-

survey data: height vs RCD, and CA vs root collar diameter.

Data Collection RCD vs Height RCD vs CA
Date r R? P-value r R? P-value

29/9/2020 0.47 0.22 2 x 1076 040 0.16 2 %1076
10/12/2020 0.39 0.15 2 x 1016 049 0.24 2 %1076
11/3/2021 0.38 0.14 2x 1076 0.25 0.06 2 x 1016
13/6/2021 0.62 0.38 2 x 1016 0.63 0.40 2 %1076
16/9/2021 0.65 0.42 2x10716 054 0.29 2 %1076
combined data 0.60 0.36 2 x 1016 0.60 0.36 2 %1076

NOTE: All of correlation coefficient (r) and coefficient of determination (R?) are statistically significant
(p-value < 0.001); Bold value indicates the highest value among its relationship.

The best equation to predict RCD from an aerially measurable

variable was therefore:

Predicted RCD (mm) = 0.1893(Height (cm)) + 5.6655 (Equation 6)

where RCD (mm) is the predicted root collar diameter and
Height is the image-based height (cm) (RMSE = 0.2813; see also Appendix

A, Table 16).

Initially, image-based measurements substantially over-estimated
RCD cf. ground measurements; the difference ranged from +9 to + 59 %
before dry period. The size of over-estimates decreased over time, as the
saplings grew larger (Table 11). Differences in mean RCD between the two
methods were insignificant during the dry season (P > 0.05). The strength of
relationships between ground-measured and image-based RCD increased
after the dry season but remained weak (highest R? = 0.36) (Figure 25). The
residuals of RCD were mostly normally distributed except during the dry
period (11/3/2021) when they were slightly right skewed (Figure 25).
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Table 11 Comparison of mean RCD value from ground-based data, image-based data,

and percentage of under/over-estimation.

Data Mean RCD from  Mean RCD from

g '9Ure " Collection Ground Data Image Data Mean Percent-age R?
ession Under/over-estimate
Date (mm) (mm)
a 29/9/2020 5.67 2+ 2.33 9.05 "+ 3.79 59.97 + 88.21 0.02
b 10/12/2020 5572 £3.70 9.12° +3.60 9.20%54.42 0.02
c 11/3/2021 9.392 +5.36 9.23% £5.16 -20.88 £ 53.22 0.18
d 13/6/2021 15.43% +9.03 12.67° +6.12 -17.42 + 49.64 0.33
e 16/9/2021 22572 £13.45 16.78" +8.45 -17.37 £ 80.27 0.36
(a)
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Figure 25 Regression analyses between RCD of ground-based and image-based data
from each data collection; 29/9/2020 (a), 10/12/2020 (b), 11/3/2021 (c), 13/6/2021 (d),
and 16/9/2021 (e) (a-c; P > 0.05, d-e; P < 0.05). Histogram of residuals indicates normality

distribution between the fitted line and each data collection.

4.3.3 The Relative Growth (RGR-H) and Performance Index

Differences in height relative growth rates (RGR-H) between aerial and
ground data varied among those 17 species with >20 individuals surviving from
29/9/2020 to 16/9/2021. Image-based RGR values greatly exceeded ground-based
measurements for 12 species (Figure 26). The closest match in this group was for
Terminalia bellirica, followed by Schleichera oleosa, Bombax ceiba, and Garuga
pinnata. For those species for which image data underestimated RGR-H, Albizia
lebbek had the closest match (Figure 26), followed by Holoptelea grandis, Vitex
canescens, and Pterocarpus macrocarpus. In addition, detection of Canarium

subulatum in images was too low to enable RGR-H to be calculated. Ground-based
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RGR-H ranged from 3 to 120.7 % per year, whilst image-based values ranged from
01to 172.69 % per year.

Schleichera oleosa, one and only species, performed image-based RPI
almost equally to the ground-based RPI (Figure 27). The RPI of 9 out of 17 cohort
species were overestimated in image-based data than ground-based data. Sterculia
pexa, was the closest overestimated image-based RPI to the ground-based, followed
by Spondias pinnata, and Garuga pinnata (these 3 species overestimated less than
twice of ground-based RPI). Whilst Terminalia bellirica, was underestimated from
image-based RGR but had closest estimates to the ground-based, followed by
Bombax ceiba, Holoptelea grandis, and Vitex canescens (these 4 species under-
estimated not less than a half of ground-based RPI). The highest overestimated and
the lowest underestimated of RPI among all species were Aegle marmelos and
Pterocarpus macrocarpus, respectively. RPI was not calculated for Canarium

subulatum.
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4.4 Discussion

4.4.1 Sapling Survivorship and Detection

The best in imaged based tree-detection method was the direct CA
method, which registered approximately 85% of trees recorded during ground
surveys. At the start of the study when the planted trees were very young (0-3
months old), the direct-CA method was also useful for measuring crown area,
despite the trees’ small size. Even during dry period (data collection on 11/3/2021),
when detection rates for all methods was very low, the direct CA method performed
better than the other techniques (17%), although its detection rate was not markedly
higher than that of the CA-LW method subsequently.

The effectiveness of using orthomosaic images to detect and count
saplings increased with sapling age and size. It reached >70% of ground counts by
the time the trees were 9 months old. In contrast, using 3D point clouds achieved
the highest detection of less than 60%, when trees were 1-year old. The height
method of tree detection in 3D point clouds was less efficient when most of the
trees were leafless in March (less than half of the saplings) because of the difficulty
of discriminating bare tree stems from the mine substrate background. Gallardo-
Salazar and Pompa-Garcia (2020) also mentioned the challenge of distinguishing
individual plants from surroundings due to lack of plant uniformity (i.e., different
species, different arrangements). This challenge was also faced in our study which
included 30 different species without fixed positions/arrangements. Furthermore,
the lack of plant uniformity complicated manual sapling detection for every method
in this study. Consequently, sapling detection by using 3D point clouds could not
be used to report sapling survivorship report within the 1% year immediately

following tree planting; only the orthomosaic images could be used to do so.

Smaller saplings were also more likely to be missed during ground
surveys. The mean RCD of “alive-not-found” saplings was significant lower
(p<0.05) by 27 % on average, compared with those recorded alive (on 16/9/21).

Both mean heights and RCD values were lower for alive-not-found saplings at other
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times, but not significantly so (Table 12). The size of saplings (in terms of height
and RCD) affected their detection during ground surveys, especially RCD when

planted saplings were 1 year old.

Table 12 Comparison of mean root collar diameter and height from ground-based data

between alive saplings and alive-not-found (ANF) saplings.

. RCD (mm) Height (cm)
Data Collection Date Alive ANF Alive ANF
10/12/2020 7.56 £3.70 -* 55.78 = 30.60 -*
11/3/2021 9.47+5.44 8.31+3.86 54.36 + 24.06 52.12 + 26.87
13/6/2021 16.04 = 14.45 1555 +9.47 70.00 + 33.64 66.97 £ 30.19
16/9/2021 23112 1352 16.64°+16.64  89.88+50.59  74.40+56.71

Note: x is calculated from values in the immediate subsequent survey.
*In ANF =no x , only 1 datum. Differences between Alive and ANF not significant
except for RCD on 16/9/2021 (P>0.05).

In contrast, sapling detectability from image-based measurements did
not appear to be related to RCD. Saplings with small crowns were not detected less
than those with larger crowns. The R? results of correlation analyses between
detectability and mean species sapling height (Figure 20) and between detectability
using both image-based methods and mean species crown area (Figure 21), were
very close to 0, suggesting that height and crown area had slight or no effect on
detectability.

Apart from size, other species related to sapling crown characteristics
might affect detectability. Fernandoa adenophylla and Phyllanthus emblica had the
highest and the lowest detectability respectively in 3D point clouds and they
possessed markedly different crown structures (Figure 28). F. adenophylla, has odd
pinnate leaves with 2-5 pairs of leaflets with a long-stalked terminal leaflet, whilst
P. emblica has insubstantial “feathery” pinnate leaves with tiny pinnae (Elliott et
al., 2006). From the top-view, F. adenophylla crowns appear dense almost solid,
whilst P. emblica presents insubstantial, thin and irregular crowns (Figure 27).
Moura et al. (2021) also suggested that the characteristics of each tree species’
crown are related with ease of automatic detectability in UAV imagery. Auto

recognition of sapling species in aerial images is not yet possible (Frame & Garzon-
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Lopez, 2020). To fully automatic species detection and understand more about the
sapling crown characteristics that affect sapling detectability further research to

develop more advanced technologies is needed (Buters et al., 2019a),

Figure 28 Comparison between Fernandoa adenophylla (left) and Phyllanthus emblica
(right) leaf characteristic; upper row — orthomosaic image, lower row — raw RGB image.

4.4.2 The Correlation of Image-based Measurements
1) Height

Image-derived height data correlated significantly with ground
survey data. The closeness of the correlation increased with time i.e., the taller
the saplings, the stronger the correlation between ground and drone height
measurements. Although height measurements were hindered by low tree
detection in images during the dry season, the few trees that could be detected
still yielded accurate height data. Therefore, the sapling age/height, at which
height could be measured with strongest correlation (also highest
detectability) in this study, was 1 year after planting at an average height of
0.8 m.
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2) Crown Area from Length and Width (CA-LW)

Correlation of the image-based CA-LW gradually improved over
time. CA-LW performed the best and with strongest correlation when the
saplings flushed new leaves after dry season. Differences between mean CA-
LW from ground-based data and image-based data were not significant at the
end of the study (1-year old). This was also confirmed by the research at a
plot planted 1 year earlier at the same site. Under the same conditions, Lee
(2021), reported that differences in percent canopy cover between ground and
UAYV images were insignificant in a 1-year-old restoration plot adjacent to the
one used in the study reported here. Therefore, the CA-LW method is
recommended to monitor the saplings for crown area expansion after the first

year of planting (at least after the first year dry period).

It was reasonable to expect that the correlation of CA-LW method
would be stronger than that of the CA method, because ground-based CA was
calculated in the same way as in the images (calculated from crown length
and width, by assuming the crown shape was an ellipse). Nevertheless, CA-
LW had slightly weaker correlation than direct-CA method over whole study.
There are two possible explanations for this. Firstly, it is possible that the
distance tool of DroneDeploy over-counted the ground surface pixel, when
measured sapling crown length and width. As mentioned in section 2.3.2,
DroneDeploy has limited zoom capability while using the tools, and
therefore, image-based crown length and width could be overestimated.
Another issue was that the longest crown dimension (crown length) may have
been measured in different places in ground surveys compared with image
analysis. Crowns tend to be viewed more from the side in ground surveys, so

the perspective is different compared with the overhead view in images.
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3) Direct Crown Area (direct-CA)

Correlation of image-based measurements of direct-CA also
improved gradually over time. The correlation of the Direct-CA method was
similar to that of the CA-LW method, but it was able to detect more saplings
(Figure 18). However, differences in mean direct-CA from ground-based data
compared with image-based data were insignificant only during dry season
(11/63/22021) and when the saplings flushed new leaves (13/6/2021).
Furthermore, there was no trend in mean percentage under/over-estimate for

direct-CA method over the study period.

Differences between ground-based CA and image-based direct-
CA might have arisen for the same reason as with the CA-LW method, as we
used the same photogrammetric software (DroneDeploy), but a different tool.
However, the last data collection (16/9/2021) was an exception in that mean
direct-CA was lower than mean crown area from ground-based data. This
indicated that area measuring tools in DroneDeploy not only over-counted

ground pixels, but also may have miss-counted canopy pixels as well.

Although the direct-CA method was a fairly accurate way to
monitor crown area during the dry season, further trials are needed to

determine the trend beyond 1 year after planting.
4) Root Collar Diameter (RCD)

Height was a more reliable predictor of RCD than CA using
ground data. The relationship between height and RCD became stronger as
the saplings grew larger (but not the relationship between CA and RCD). The
model, acquired from the height relationship using 1-year-old data (equation
6), had the highest fit (even better than the best CA relationship). Because
when sapling’s crown area was absent during the dry period (in March), the
predicted RCD from every absent crown area sapling would be all the same
(CA=0).
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Application of species-specific equations could result in a higher
reliable predictor of RCD. For 14 of the 17 species correlation between height
and RCD had higher fit than that of equation 6 (see also Appendix A). lida et
al. (2011) suggested that prediction of RCD from models is species-specific,
since species differ in their relative proportions (traits/habit). Khamyong et
al. (2018) also stated that species-level characteristics should be considered
when predicting tree variables, to reduce the error. Although, there was
uncertainty with using only 1 equation, in terms of the rapid
assessment/monitoring, it is not practical to apply species-specific equations
to predict unmeasurable variables from image-based data. Therefore, further
investigation should consider whether to apply species-specific equations

appropriate to their study.

Table 13 Slope (m), intercept (c), and coefficient of determination (R?) from

relationship between height vs RCD for individuals of the 17 cohort species.

RCD vs Height

Equation acquired from Slope intercept (c) R?
5th Data Collection (equation 6) 0.1851 5.96757 0.42
Spondias pinnata 0.18809 14.28255 0.73
Phyllanthus emblica 0.14866 4.20313 0.52
Terminalia bellirica 0.2093 2.82355 0.50
Albizia lebbeck 0.1996 5.5309 0.72
Protium serratum 0.21579 1.90559 0.79
Canarium subulatum 0.22844 1.86584 0.60
Pterocarpus macrocarpus 0.12387 2.91336 0.71
Garuga pinnata 0.12712 17.92882 0.15
Sterculia pexa 0.20056 4.91627 0.58
Holoptelea grandis 0.20006 7.25224 0.55
Schleichera oleosa 0.28604 4.26029 0.64
Oroxylum indicum 0.22274 -1.45728 0.68
Bauhinia variegata 0.17353 3.84389 0.43
Fernandoa adenophylla 0.3247 19.6199 0.13
Aegle marmelos 0.09906 4.1613 0.28
Bombax ceiba 0.19657 3.59419 0.59
Vitex canescens 0.16763 10.98862 0.53

Note: R? represented in red means the fit of the regression result from that species is worse than

the result of 5th Data Collection (equation 6).
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RCD values, derived from image data, were not significantly
correlated with ground-based direct RCD measurements (with exception of
the dry period only); thus, correlation was weak. Although correlation
stronger over time, it remained unacceptably low at the end of the study
period. This may have been due to the application of non-species-specific
predicting equations in this study. The youngest age of trees, at which RCD
could be predicted with the strongest correlation from imagery was 1-year
old. Therefore, use of non-specific equations to predict RCD is not

recommended.
4.4.3 RGR and Relative Performance Index
1) RGR-H

Image-based measurements performed quite well for predicting
RGR-H for faster-growing sapling species (where the height difference
between first data collection and the end of the study was large), However,
image-based measurements substantially overestimated RGR-H of slower-
growing species (small difference in height) (e.g., Aegle marmelos (>1,000%)
and Phyllanthus emblica (>2,000%), etc.). However, the lack of a relationship
between species-level mean RGR-H (% per year) and percentage species-
level detectability (Figure 29) meant that image-based measurement could not
reliably predict RGR as accurately as ground-based measurements regardless

of the size of height change.

Errors in predicting RGR-H from image-based measurements
were compounded by weak correlation of height measurements, particularly
at the start of the study, when sapling detectability was low and correlation
between image and ground height measurements was very low (R?<0.05).
Therefore, use of image data to calculate RGR-H is not recommended before
detectability and rates and height measurements become more reliable (i.e.,

at least 1 year after planting).

61



100
00
80
70
60
50
40

% Detectability

30
20

y= 00344+ 51888

R?=10.0071
L
L
L
o, -
. .. B ieesmssssEsssssssssssssEEETEmsasemres
............................................ n
L]
- ®
o L
L
20 40 60 80 100 120 140
EGE % per year

Figure 29 Scatter plot between species-level mean relative growth rate (% per year) and

percentage species-level detectability (17 species with n > 20).

2) Relative Performance Index

Calculation of a standardized relative performance index has
become an established method to rank species’ suitability, when performing
restoration trials with diverse species mixtures. The ultimate test of image-
based technique is to determine if data from UAV imagery could be used to
generate the same species-suitability ranking as from ground data (regardless

of differences in absolute values).

Unfortunately, the species ranking produced from image-based
technique was drastically different than that produced conventionally from
ground-based data. The order of species ranking compared between ground-
based and image-based measurements was not similar. For example, Albizia
lebbeck was the top-ranked species using ground-based data, whereas
Protium serratum performed the best using image-based data. The error in
percent detected saplings from height method and error of predicting RGR,
were both became magnified by multiplication when calculating RPI. Finally,

clearly large improvements in the collection and analysis of image-derived
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data were needed, before image-based measurement techniques can

adequately replace ground surveys.
4.4.4 Limitation of Image-based Techniques and Further Suggestion
1) Cost and speed of Image-based Technique

Our drone-based technique has the potential to minimize the
involved labor input for the sapling monitoring. Flying the UAV
autonomously, we required only 2 operators and were able to complete whole
site data collection within 1 day. In contrast, ground-data collection required
at least 6 people, to monitor all saplings over 2-3 working days. Consequently,
staff hiring cost for data collection and transportation costs could be reduced
by up to 2-3 times, using aerial methods. Ground measurements require only
simple equipment, whereas drone methods require a considerable capital
outlay at the start, although such equipment costs are spread more thinly as
the number of projects increases.

After field work, 1 day is needed for ground data entry and
analysis. Although image process of aerial data also requires 1 day, the
process is autonomous (so no labor needed). Measuring variables within the
images and models produce however is time consuming (at least 1 full day’s
work), but this step might be replaced in the near future with autonomous Al-
based analyses. Therefore, it is likely that aerial based monitoring techniques
will save both time and money as technologies advance. However, further
work is needed to compare cost effectiveness between image-based and

ground methods techniques.
2) Dried Period Effect and Tree habit

In Lampang Province, the dry season runs from November to
April (SCG, 2015). Data collection in March, when most trees were leafless,
was particularly difficult, as trees were less visible, both on the ground and in

aerial images. Furthermore, many trees appeared dead, when in fact they were
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dormant. Therefore, it is necessary to check whether the trees are actually
dead or have poor health by scratching their stem to check for green tissue. If
the saplings still have green tissue, they are assigned a low health score
(health score < 1), and the other variables are measured, except crown
dimensions. At the same time, understanding trees’ habit is also a key point
to achieve aerial-based techniques to monitor young saplings planted for

open-cast mine restoration on the first objective.
3) Non-target Trees

As planted saplings grew, non-target plants also grew up
alongside them and became more abundant. Figure 30 shows a lot of green
bushy plants within the study plot, many of which were potentially invasive
non-natives. Cajanus cajan (Linn.) Millsp. (Common name: Pigeon Pea), had
germinated along the bench from seeds scattered by SCG staff (sometimes
covering planted saplings) on the assumption that it improves the soil nutrient
status. However, the spread of the legume hindered sapling detection in both
orthomosaic images and 3D point clouds. It was not a serious problem during
ground-based surveys, since workers could easily distinguish trees from the
legume close up. The study presented here was essentially a proof-of-concept
trial, under conditions of maximum sapling visibility (against the plain
background of the mining substrate). As most forest restoration sites are
covered in herbaceous weeds, which can obscure small, planted trees, further
research will be needed to ensure image-based monitoring methods can

readily distinguish between tree crowns where there is a weedy background.
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Figure 30 Cajanus cajan (Pigeon Pea) caused difficulty in tree distinction and variables
measurement; A part of orthomosaic image on 16/9/2021 (1-year old tree) (a), one of the

raw RGB images used in this processed image (b).
4) Software Setting and Performance

Image processing procedures in DroneDeploy are fixed as the
default setting (no additional processing setting). For example, model quality,
optimized alignment, key point and tie point limit, etc.) were all standard. All
processed images were automatically generated from the input raw images.
The quality of the input raw images plays an important role in image
processing and therefore in tree detection. The type of input images is
therefore an important consideration. For example, Buters et al. (2019a) used
multispectral images to detect high numbers of saplings (even seeds were
detected easily) correlation of > 80%. In this study, since RGB images were
used for image processing, potential tree detection may have been lower than
it might have been with other image types. Figure 31 shows the difficulty of
height measurement in 3D point clouds. The trees could hardly be
distinguished from the ground surface in the original RGB-perspective, whilst
edited color, showing altitude found no trees present. However, Buter’s study
was performed on a flat clear-cut area, eliminating many confounding
external factors, while uncontrollable surrounding condition (such as dried
period) of this study site in the mine restoration area.
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Figure 31 Difficulty of height measurement on the youngest age of planted sapling
(0 month); original RGB-perspective (a), edited color related to attitude failed to detect
sapling pixels (b).

5) Additional Equipment

In this study, acquisition of aerial images was only controlled by
the flight planning application (LITCHI) and with the help of ground control
points (black and white plastic boards, attached to PVC poles along benches)
to indicate the boundary of the target bench for each flight mission. Several
researchers have used advanced ground control points, linked to GPS
systems, to improve correlation of aerial images. They tested use of ground
control points, and more advanced methods, particularly using real-time-
kinematic (RTK) and postprocessing-kinematic (PPK) technologies, to
improve the correlation of coordinates and increase the feasibility of image-

based measurements (Dempewolf et al., 2017).

Further advancement of UAV capabilities could revolutionize
environmental recovery activities (Torresan et al., 2017, Yao et al., 2019),
particularly monitoring of rehabilitated areas to provide accurate methods of
tracking sapling communities and even high-value individuals, giving
practitioners a reliable tool for predicting the trajectory of these communities
by remotely measuring growth and development. Future research should also
investigate the possibility of acquisition of required variables with
combinations of sensors during single flights (e.g., thermal, multispectral, or

hyperspectral sensors, etc.), which would cover the amount of data collected
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in less time and lead the study closer to a one-pass solution for ecological
monitoring (Gallardo-Salazar & Pompa-Garcia, 2020). With more research
and investment, UAV-based remote sensing could allow restoration
practitioners to monitor plant performance earlier in the community recovery
process, with greater correlation, precision, and cost-efficiency, and at much
finer resolution over increasingly larger spatial scales, compared to other

monitoring methods like ground survey/data collection (Buters et al., 2019c¢).

4.4.5 Pros and Cons of Manual Image-based Measurements (compared with

Al analyses)
Pros Cons
e capital outlay is less e operators need to consider and solve
(purchase of Al software not every obstacle/unexpected situation
required) by him/herself
e speed in distinguish individual e requires more time when
seedlings (to species level) background is complex or non-target
depend on operator’s skill objects (weed) abundant

¢ able to notice any mistakes of
the target object (saplings),
because operator need to run
through step by step

o difficult to distinguish individual
saplings when surrounding
conditions change (e.g. dry period)

e scaling up to large areas is
impractical
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CHAPTER 5

Conclusions

The main purpose of this study—to develop a rapid aerial-based technique to
monitor young trees—was partially achieved for saplings 1 year or more after planting,
with detectability rates up to 85% based on the direct-CA method (Figure 18) and 10%
error in height measurements (Table 7).

Among the free versions of the three software tools tested, DroneDeploy is
recommended for generating 3D point cloud models, and for acquiring sapling height
data. This study can be used as a preliminary guideline for environmental researchers to

choose suitable software for sapling measurement.

Sapling height and crown area variables can be quantified directly from low-
altitude aerial imagery. For crown area measurement, either CA-LW or direct-CA method
is recommended. RCD can be predicted from height, using equations acquired from
ground-based correlations. Species-specific equations might not be practical for rapid

sapling assessment/monitoring.

Highest tree-detection percentages using 1-year old orthomosaic images were
85% (direct-CA) and 81% (CA-LW), and in 3D point clouds it was 64 %. Orthomosaic
images have a much higher resolution than 3D models, so trees are far more easily
distinguished in them. Saplings were mostly undetectable (missed) when leafless during
the dry season. Individual characteristics of sapling species, like leaf size and crown
architecture may influence detectability more than overall tree size since smaller trees
were not less detectable than larger ones in both orthomosaic images and 3D point cloud.

When saplings were young and small most image-based measurements were
exaggerated compared with ground measurements. As the size and age of saplings
increased, the extent of overestimations of image-based measurements varied

inconsistently among variables.
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Image-based height measurements correlated moderately with ground-based
measurements, with a moderate correlation (R? = 0.57, P< 0.001) after the trees had been
growing 1 year). CA from image-based measurement moderately correlated when
compared ground-based measurements, (R? = 0.62 and 0.68, P< 0.001 in CA-LW and in
direct-CA method, respectively) after the trees had been growing 1 year. Predicted image-
based RCD correlated weakly with ground-based RCD with weak correlation (R? = 0.36,
P< 0.001) after the trees had been growing 1 year. Species-specific equations perform
better and would help to increase correlation of RCD estimates from image-based height

measurements.

Tree detection and measurement correlation became more reliable during the
second rainy season after planting (after the trees had been growing 1 year), when most
of the trees were taller than 0.8 meters. Therefore, aerial monitoring is recommended from

the second rainy day after planting, onwards when the trees are 9 months old.

Errors in measurements of survival and growth became compounded and
magnified when calculating RPI. Consequently, image-based RPI values drastically
altered the ranking of species by overall field performance, compared with RPI values
derived directly from ground data. Clearly, further research will be needed to improve
technologies and processing at all stages of drone-based monitoring, before image data
could contribute meaningfully towards species-selection decision making, based on

young field trials.

Although this study has yielded promising results in terms of sapling
detectability and height measurements in a simplified environment, more work is needed
before developing the technique to monitor sites of greater complexity. The study has
shown that seasonality (particularly deciduousness), species traits (e.g., crown density
and leaf size/arrangement) and above all, appropriate age and size of the target trees all
need to be considered when developing appropriate aerial techniques to monitor the

progress of forest ecosystem restoration on more complex sites.
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Table 14 Number of live saplings detected in ground surveys by time and species.

APPENDIX A

(Additional) Ground-based Data

Code Specie Starting 18t 2nd 3rd 4t 5th
Cohort Data Data Data Data Data
S01  Gmelina arborea Roxb. 43 38 23 17 14 8
S04 Spondias pinnata (L.f.) Kurz 41 39 37 35 35 33
S06  Phyllanthus emblica L. 44 39 29 25 23 21
S07  Afzelia xylocarpa (Kurz) Craib 39 37 37 31 27 21
S08  Terminalia bellirica (Gaertn.) Roxb. 37 35 33 28 28 28
S09  Tectona grandis L.f. 27 25 22 17 15 14
S11  Bauhinia purpurea L. 46 45 43 36 32 30
S26  Albizia lebbeck (L.) Benth. 44 42 41 36 34 29
> (Wall. ox Colebr) Engl T L D
S34  Canarium subulatum Guillaumin 44 40 38 32 22 21
S36  Pterocarpus macrocarpus Kurz 32 32 31 26 22 19
S39  Xylia xylocarpa (Roxb.) Taub. 39 33 25 15 10 7
S40  Careya arborea Roxb. 9 9 7 4 3 3
S43  Garuga pinnata Roxb. 41 37 37 34 31 29
S45  Acrocarpus fraxinifolius Arn. 40 37 27 20 18 17
S46  Erythrina stricta Roxb. 8 8 3 3 3 2
S49  Sterculia pexa Pierre. 44 39 36 35 31 29
S50  Pentacme siamensis (Miq.) Kurz 25 20 4 1 0 0
S60  Holoptelea grandis (Hutch.) Mildbr. 38 26 25 23 20 19
S65  Schleichera oleosa (Lour.) Merr. 37 35 31 24 20 19
S66  Oroxylum indicum (L.) Kurz 41 40 37 34 32 31
S67 '?é%gen:?ieirﬁ;]?q?btus'fOIIus 38 36 15 2 0 0
S69  Bauhinia variegata L. 43 43 38 36 32 27
ST Wl ex &.Don) Steenis 7 2 #2822
S71  Artocarpus lacucha Buch.-Ham. 36 33 27 13 8 8
S72  Aegle marmelos (L.) Corréa 39 40 37 28 22 17
S79 I(\g;;:(abg;/r:?u;cgzndlfolla 8 8 8 6 6 6
S80  Bombax ceiba L. 42 40 35 34 33 32
S81  Vitex canescens Kurz 26 23 22 20 19 18
S82  Breonia chinensis (Lam.) Capuron 25 21 19 14 12 10
Total 1048 967 832 691 603 547

NOTE: The date of each data collection 1 data (29/9/2020), 2™ data (10/12/2020), 3" data
(11/3/2021), 4 (13/6/2021), and 5 (16/9/2020)
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Table 15 Numbers of sample saplings for which ground-based data acquired during each
time of data collection by bench and time

Data Collection Date

Bench Comparable
Order samples 29/9/2020 10/12/2020 11/3/2021  13/6/2021  16/9/2020
1t 290 274 221 162 178 179
2nd 204 185 156 122 104 103
3rd 166 152 119 86 59 64
4th 144 139 112 84 82 74
5th 129 119 100 96 84 79
6th 115 95 85 3 78 71
Total 1048 964 793 553 585 570

Table 16 Simple regression coefficient predicting root collar diameter (N=428).

Dependent Independent Variable  Standard . \§.
Variable Variables Estimation Error EWuedgign{ijcance RMSE
Root Collar Constant 5.6655 0.2105 -4.52 6.41 x 106

; 0.2813
Diameter Ground-based Height 0.1893 0.0029 67.68 <2x107

Table 17 Simple regression coefficient predicting root collar diameter of individual

sapling cohort species (N>20).

Dependent Independent Variable Standard t- Significance RMSE

S Variable Variables Estimation Error value
Constant 14.28255 2.22775 6.411 4.44 x 10-7
04  Root Collar Ground-based 1.164982
Diameter Height 0.18809 0.02066 9.104 3.89E-10 '

Dependent Independent Variable Standard t- Significance RMSE

S Variable Variables Estimation Error value
06 Root Collr — Conjtznt d 4.20313 31899 1318  0.204151 eostae
Diameter roﬂgiéhi‘s‘* 0.14866 003186 4667  0.000192

Dependent Independent Variable Standard t- Significance RMSE

S Variable Variables Estimation Error value
% Root Collar ) Conjtznt d 2.82355 3.78348  0.746 0.462 09260
Diameter roﬂgiéhﬁse 0.2093 0.03945 5306 150x105

Dependent Independent Variable Standard t- Significance RMSE

Variable Variables Estimation Error value

S Constant 5.5309 3.1286 1.768 0.0898

26  Root Collar G d-based 00139025
Diameter m‘:'r;iéh?se 0.1996 00245 8147 2.28x10-8

S Dependent Independent Variable Standard t-

30 Variable Variables Estimation Error value Significance RMSE
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Constant 1.90559 2.0848 0.914 0.369
Root Collar G d-based 0415993
Diameter round-base 0.21579 0.02047 10544  2.95E-11 '
Height
Dependent Independent Variable Standard t- -

S Variable Variables Estimation Error value Significance RMSE
34 Root Collar < Conjtznt . 1.86584 2.29596 0.813 0.426 | 121462
Diameter round-base 0.22844 004106 5563  2.30x 10-5

Height
Dependent Independent Variable Standard t- -

s Variable Variables Estimation Error value Significance RMSE
36 Root Collar < Conjtgnt - 2.91336 1.65876 1.756 0.097 06362105
Diameter e 0.12387 001846 671 3.66x106

Height
Dependent Independent Variable Standard t- -
S Variable Variables Estimation Error value Qificance RMSE
Constant 17.92882 6.35316 2.822 0.00943
43 Root Collar 5 d-based 0.6704281
Diameter ragyIu-oege 0.12712 005481  2.319 0.0292 '
Height
Dependent Independent Variable Standard t- .

S Variable Variables Estimation Error value pidbaficance RMSE
49 Root Collar < Conjtznt . 491627 2.77841 1.769 0.0881 578085
Diameter I ncgase 0.20056 003154 636  825x10-7

Height
Dependent Independent Variable Standard t- . S
S Variable Variables Estimation Error value Sigiyficance RMSE
60  Root Collar = Conjtznt . 7.25224 473873 1.53 0.144308 ) 657235
Diameter FOUTGNESE 0.20006 0.04161  4.808  0.000164 '
Height
Dependent Independent Variable Standard t- -
S Variable Variables Estimation Error value Sigrjiicance RMSE
Constant 4.26029 3.0485 1.398 0.18
65  Root Collar z ey, 1554621
Diameter roung e 0.28604 005012 5707  2.57E-05 '
Height
Dependent Independent Variable Standard t- ...
Variable Variables Estimation Error value Signifitancs RMSE
S Constant -1.45728 2.51909 -0.578 0.567
66  Root Collar G d-based 1788513
Diameter round-base 0.22274 002726 8171  4.03E-09 '
Height
Dependent Independent Variable Standard t- S
Variable Variables Estimation Error value Significance RMSE
S Constant 3.84389 3.64582 1.054 0.301815
69  Root Collar G Sbased 0.8568805
Diameter round-base 0.17353 003831 453 0000126
Height
S  Dependent Independent Variable Standard t- S
70 Variable Variables Estimation Error value Significance RMSE
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Constant 19.6199 8.1222 2.416 0.028
Root Collar G 4-b d 2.297233
Diameter round-base 0.3247 01711  1.898 0.0759 '
Height
Dependent Independent Variable Standard t- N
S Variable Variables Estimation Error value Significance RMSE
72 Root Collar < Conjtznt . 4,1613 1.544 2.695 0.0159 02963402
Diameter r°|‘_’|”.' ase 0.09906 003619  2.737 0.0146 '
eight
Dependent Independent Variable Standard t- -

S Variable Variables Estimation Error value Significance RMSE
80 Root Collar . Con;tznt - 3.59419 3.11521 1.154 0.257 01218554
Diameter round-oase 0.19657 0.02803  7.012  508E-08

Height
Dependent Independent Variable Standard t- -
S Variable Variables Estimation Error value Rypificance RMSE
81  Root Collar / Conjtznt ¢ 10.98862 3.92377 2.801 0.01229 03860762
Diameter ro':';iéh"t"se 0.16763 003652 4591  2.60E-04

Note: Code numbers were species code were listed as the following:

S04
S06
S08
S26
S30
S34
S36
S43
S49

Spondias pinnata
Phyllanthus emblica
Terminalia bellirica
Albizia lebbeck

Protium serratum
Canarium subulatum
Pterocarpus macrocarpus
Garuga pinnata

Sterculia pexa
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S60
S65
S66
S69
S70
S72
S80
S81

Holoptelea grandis
Schleichera oleosa
Oroxylum indicum
Bauhinia variegata
Fernandoa adenophylla
Aegle marmelos
Bombax ceiba

Vitex canescens



APPENDIX B

(Additional) Image-based Data

Table 18 Information reported from photogrammetric outputs of 1%t Bench; in the order

of the first data collection to last data collection

Data Collection Orthomosaic Average GPS Area Coverage = RMSE Point Cloud Density
Date Resolution (in/px) Trust (m) (m?) (m) (points/m?)
29/9/2020 0.35 10.00 4061.40 0.54 2207.03
10/12/2020 0.35 10.00 4064.15 0.59 7406.54
11/3/2021 0.35 10.00 3944.76 1.12 2090.03
13/6/2021 0.35 10.00 4547.39 0.49 2274.41
16/9/2021 0.35 10.00 4240.54 0.48 6166.75

Table 19 Information reported from photogrammetric outputs of 2" Bench; in the order

of the first data collection to last data collection

Data Collection Orthomosaic Average GPS Area Coverage  RMSE  Point Cloud Density
Date Resolution (in/px) Trust (m) (m?) (m) (points/m?)
29/9/2020 0.35 10.00 2710.21 0.63 2610.68
10/12/2020 0.35 10.00 3132.24 0.74 609.99
11/3/2021 0.35 10.00 3406.35 1.00 2734.46
13/6/2021 0.35 10.00 4404.05 0.50 1512.11
16/9/2021 0.35 10.00 4358.34 0.37 5681.62

Table 20 Information reported from photogrammetric outputs of 3@ Bench; in the order
of the first data collection to last data collection

Data Collection og;zgmgzan‘c Average GPS Area Coverage RMSE  Point Cloud Density

Date (in/px) Trust (m) (m?) (m) (points/m?)
29/9/2020 0.35 10.00 2985.63 0.55 591.48
10/12/2020 0.35 10.00 2971.16 0.78 592.34
11/3/2021 0.35 10.00 3928.15 0.70 4071.88
13/6/2021 0.35 10.00 4137.75 0.57 6820.23
16/9/2021 0.35 10.00 3315.95 0.46 6207.12
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Table 21 Information reported from photogrammetric outputs of 4" Bench; in the order
of the first data collection to last data collection

Data Collection Orthomosaic Average GPS  Area Coverage RMSE Point Cloud Density
Date Resolution (in/px) Trust (m) (m? (m) (points/m?)
29/9/2020 0.35 10.00 1427.21 0.49 464.03
10/12/2020 0.35 10.00 1409.96 0.59 638.84
11/3/2021 0.35 10.00 1624.18 0.96 826.45
13/6/2021 0.35 10.00 1709.35 0.52 8152.69
16/9/2021 0.35 10.00 1833.49 0.55 6540.47

Table 22 Information reported from photogrammetric outputs of 5" Bench; in the order

of the first data collection to last data collection

Data Collection Orthomosaic Average GPS Area Coverage ~RMSE  Point Cloud Density
Date Resolution (in/px) Trust (m) (m?) (m) (points/m?)
29/9/2020 0.35 10.00 1147.46 0.53 2628.22
10/12/2020 0.35 10.00 1136.75 0.92 2666.11
11/3/2021 0.35 10.00 1258.25 1.19 2726.93
13/6/2021 0.35 10.00 1442.47 0.80 2029.43
16/9/2021 0.35 10.00 1748.72 0.55 6399.58

Table 23 Information reported from photogrammetric outputs of 6! Bench; in the order
of the first data collection to last data collection

Data Collection Orthomosaic Average GPS Area Coverage RMSE  Point Cloud Density
Date Resolution (in/px) Trust (m) (m? (m) (points/m?)
29/9/2020 0.35 10.00 660.74 0.34 1051.10
10/12/2020 0.35 10.00 1071.41 0.40 341.32
11/3/2021 0.35 10.00 1566.52 0.45 780.60
13/6/2021 0.35 10.00 915.92 0.39 4938.81
16/9/2021 0.35 10.00 1082.98 0.29 10.12
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Figure 32 The orthomosaic images of 1% Bench. In the order of the first data collection
to last data collection (left to right); a-e, respectively. The letter “N” to represent North
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Figure 33 The 3D point clouds images of 1% Bench. In the order of the first data collection

to last data collection (left to right); a-e, respectively. The letter “N” to represent North.
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Figure 34 The orthomosaic images of 2" Bench. In the order of the first data collection
to last data collection (left to right); a-e, respectively. The letter “N” to represent North
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Figure 35 The 3D point clouds of 2" Bench. In the order of the first data collection to
last data collection (left to right); a-e, respectively. The letter “N” to represent North
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Figure 36 The orthomosaic images of 3" Bench. In the order of the first data collection
to last data collection (left to right); a-e, respectively. The letter “N” to represent North
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Figure 37 The 3D point clouds of 3™ Bench. In the order of the first data collection to
last data collection (left to right); a-e, respectively. The letter “N” to represent North
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Figure 38 The orthomosaic images of 4™ Bench. In the order of the first data collection
to last data collection (left to right); a-e, respectively. The letter “N” to represent North

92



Scale Bar = 1:500 °

| (3)

om 5m 10m

Figure 39 The 3D point clouds of 4™ Bench. In the order of the first data collection to
last data collection (left to right); a-e, respectively. The letter “N” to represent North
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Figure 40 The orthomosaic images of 5 Bench. In the order of the first data collection
to last data collection (left to right); a-e, respectively. The letter “N” to represent North
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Figure 41 The 3D point clouds of 5" Bench. In the order of the first data collection to
last data collection (left to right); a-e, respectively. The letter “N” to represent North

95



Scale Bar = 1:750

_— 1 (a) (b) (©) (d) (€)

om S5m 10m

Figure 42 The orthomosaic images of 61 Bench. In the order of the first data collection
to last data collection (left to right); a-e, respectively. The letter “N” to represent North
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(b)

Figure 43 The 3D point clouds of 6" Bench. In the order of the first data collection to
last data collection (left to right); a-e, respectively. The letter “N” to represent North

97



Author’s Name
Place of Birth

Education

Scholarship

CURRICULUM VITAE

Mr. Punnat Changsalak
Chanthaburi Province, Thailand

2019 Bachelor of Science, Major in Biology (Ecology), Chiang
Mai University, Thailand

2018 — present  Development and Promotion of Science and
Technology scholarship (DPST scholarship)

98



