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Figure 12.1  

 

(A) A lidar point cloud 

from a manned aerial 

survey at Sepilok, 

Malaysia. Algorithmic 

(DBSCAN) segmen-

tation was used to 

assign a different 

colour to each tree 

crown (oblique view).  

 

 

 

 

 

(B) A horizontal 

projection of the 

canopy. 

 

 

 

 
 

(C) A vertical cross-

section of the canopy, 

with segmentation of 

canopy layers, shown 

as dashed curves. 
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AUTOMATED VEGETATION MONITORING FOR FOREST RESTORATION 

 
Ryan Chisholm1 and Tom Swinfield2,3,4 

 
ABSTRACT 

 
We discuss the potential of automating vegetation monitoring, to 

aid forest restoration. We propose that automated monitoring focuses 

on estimating forest biomass and tree diversity, because these are 

relevant to many ecosystem services, and they can be assessed with 

existing automated technologies, to some extent. We discuss the 

importance of setting baselines and realistic goals that take into 

account site history and landscape context. We review relevant 

technologies, including unmanned aerial vehicles (UAVs), lidar, 

multispectral and hyperspectral sensors, visible-light cameras and data-

processing software. We discuss advantages and disadvantages of 

below- versus above-canopy surveys. We identify technological 

obstacles to automated monitoring, including the automation of tree- 

species identification in diverse forests, and the assessment of forest 

structure in high-density forests. These obstacles are particularly rele-

vant to tropical forests, which are typically dense and diverse. We also 

identify battery lifetime as a limitation to large-scale surveys, and one 

that is unlikely to be alleviated soon. Despite these caveats, available 

technology is adequate for automating small-scale assessments of 

some forest variables that are relevant to restoration, particularly in 

less dense, less diverse temperate and boreal forests. A fruitful 

approach may be to use intensive ground-level and low-altitude 

automated surveys, to calibrate data from satellite imagery that is 

subsequently applied to monitor restoration over larger areas. 
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SETTING THE GOALS OF AUTOMATED RESTORATION MONITORING 
 

Forest restoration is an essential component of global efforts to protect 

biodiversity and mitigate climate change. Here we review automated techniques for 

forest restoration. Any discussion of effective forest restoration first requires the 

definition of explicit goals. If forest restoration equates to restoration of ecosystem 

services, then the question can be rephrased in terms of ecosystem services: which 

ones do we want to restore? Ecosystem services are categorised into regulating, 

supporting, provisioning and cultural functions (MEA, 2005). Regulating services 

include greenhouse gas regulation, nutrient cycling and hydrology. Supporting 

services include habitat provision and soil formation. Provisioning services are the 

provision of food, timber and other resources for human consumption. Cultural 

services include the provision of wilderness value and existence value to humans. In 

deciding which ecosystem services will be the subjects of automated monitoring, we 

must take into account: i) which ecosystem services are valued by stakeholders, ii) 

which can be feasibly measured with automated technology and iii) which may be 

proxies for other, harder-to-measure ecosystem services. 

To answer the first question, we must consider the preferences of different 

stakeholder groups. Recreational forest users are likely to prize cultural services, 

such as wilderness value and a few key charismatic components of biodiversity. 

Biologists, on the other hand, will put more emphasis on regulating and supporting 

services and on cultural services that relate to biodiversity, defined more generally. 

Resource and environmental economists may emphasise provisioning services and 

perhaps economically quantifiable regulating services (e.g., carbon sequestration 

can be quantified with carbon credits) or cultural services (e.g., provision of 

wilderness value can be quantified as eco-tourism revenue). 

In answer to the second question, only a few of these ecosystem services are 

likely to be measurable with automated technology in the next decade or two. For 

those related to forest biomass and physical structure, including habitat availability 

and microclimate (SCHWARTZ et al., 2000; ANDERSON & GASTON, 2013, JUCKER et al., 

2018, DEERE et al., 2020), remote-sensing technologies exist that can be deployed 

for both above-canopy surveys (ASNER, 2007; MASCARO et al., 2011; ASNER et al., 2012; 

JAAKKOLA et al., 2017; KELLNER et al., 2019) and, to a more limited extent, for below-

canopy surveys (FORSMAN & HALME 2005; MCDANIEL et al., 2012; CHISHOLM et al., 2013). 

For ecosystem services, related to tree diversity (e.g., existence value), incipient 

technologies can provide coarse estimates from lidar and hyperspectral imagery 

(DINULS et al., 2012; FÉRET & ASNER 2012; SCHWEIGER et al., 2018). For ecosystem 

services, related to specific tree species (e.g., provision of sustainable timber 
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supplies), distinctive plants can be identified from remotely sensed imagery 

(ANDERSON & GASTON, 2013). However, many ecosystem services, such as hydrology 

and soil formation, do not relate directly to any of these measurable indicators. This 

is especially true for some of the more abstract cultural services, such as wilderness 

value. However, advances in artificial intelligence may prove fruitful even here. 

Fortunately, and in answer to the third question, many ecosystem services, 

though difficult to measure directly by automated means, are indirectly related to 

tree biomass and diversity. A forest is defined by the presence of trees taller than 5 

m, with canopy cover of greater than 10% over an area of at least 0.5 ha (FAO, 2010). 

Consequently, focussing on forest biomass, as a primary indicator of restoration 

success, makes sense. Forests that have high values of standing biomass contain 

large carbon stocks (ZAKI & LATIF, 2017) and thereby contribute to global climate 

regulation; though young forests sequester new carbon faster than old-growth 

forests do (POORTER et al., 2016). High-biomass forests also provide humans with 

timber, non-timber forest products and recreational value. The biodiversity of other 

taxa, including insects and birds, is correlated with plant diversity and the presence 

of certain habitat structures, such as large trees (ZHANG ET AL., 2016, DEERE et al., 

2020). This all suggests that tree biomass and diversity are good proxies for general 

biodiversity and associated ecosystem services. Thus, in this review, we focus on tree 

biomass and tree diversity, as key indicators of forest condition. They are relatively 

straightforward to measure and, directly or indirectly, indicative of many key 

ecosystem services. 

The remainder of this chapter is structured as follows. In the section “Metrics of 

Forest Restoration”, we discuss how our two indicators — tree biomass and tree 

diversity — can be measured, both directly and indirectly. In the section 

“Technologies for Forest Restoration Monitoring”, we discuss technical aspects of 

technologies that can potentially automate these measurements. In the section 

“Above- vs Below-Canopy Monitoring”, we discuss above-canopy and below-canopy 

approaches to automated monitoring of forest restoration. Finally, in the section 

“Summary and Conclusions”, we propose a roadmap for future development of 

automated forest restoration monitoring. 
 

 

METRICS OF FOREST RESTORATION 
 

Measuring forest recovery is meaningful only insofar as appropriate targets for 

indicator variables can be set. It is crucial that restoration baselines and targets are 

set in context (ASHTON et al., 2001; LAMB et al., 2005). For example, targets ought to 
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consider the initial biomass and diversity when restoration started, as well as local 

constraints on biomass accumulation and diversity for the site. If baseline data for 

the target site are not available, efforts should be made to find appropriate baseline 

sites that match the target site’s abiotic conditions (HUETTNER et al., 2009; PÉREZ-

CRUZADO 2014). Distance to intact forest should also inform expectations of forest 

recovery rates. With these guidelines in mind, we now discuss the metrics of tree 

biomass and diversity that are potentially viable for automated monitoring. 

For estimating tree biomass, the most direct non-destructive method is first to 

calculate the volume of standing trees and then apply per-tree wood density values. 

Indirect methods involve measuring variables, such as top-of-canopy height, that are 

correlated with tree biomass (CLARK et al., 2011, SWINFIELD et al., 2019). Such indirect 

methods come with caveats: they must be calibrated, using field data and can be 

biased if calibrated using data from sites having different characteristics from the 

focal site (e.g., methods calibrated at dry sites will be unlikely to give accurate results 

at wet sites). Monitoring canopy height can also be used to detect ongoing 

disturbances, such as natural tree falls and illegal logging (MILLER et al., 2000). 

For estimating tree diversity, direct metrics include species richness and 

Shannon diversity, but these may be impractical to measure, necessitating the use 

of surrogates. One approach is to measure the spectral diversity of the forest canopy. 

Spectral diversity is defined as the variation in reflectance spectra usually measured 

per unit area. Other options include summarising spectra to hypervolumes that 

describe multidimensional variation (SCHNEIDER et al., 2017), or by using an approach 

that counts the number of distinct spectral clusters (BONGALOV et al., 2019). Diversity 

is also assumed to increase with successional stage, especially in early stages 

(CHAZDON 2008a). However, measuring successional stage can be complicated, 

because multiple forest successional pathways are possible from the same initial 

condition (WALKER et al., 2007; CHAZDON, 2008b). The rate and pathway of recovery 

is governed by (1) the extent of degradation before restoration, (2) the degree of 

ongoing disturbance and (3) the influx rate of late-successional propagules (ASHTON 

et al., 2001; LAMB et al., 2005). Successional stage can be tracked using automated 

technology, by assessing the abundance of distinctive early-successional species, 

canopy cover and canopy height (D’AOUST et al., 2004; KALACSKA et al., 2007). Canopy 

cover may be a useful metric in the very early stages of restoration, but in tropical 

forests the canopy closes relatively quickly, when pioneers still dominate and the 

forest is far from its climax condition (KABAKOFF & CHAZDON, 1996; MONTGOMERY & 

CHAZDON, 2001). Thus, the abundance of certain species could serve as an indication 

that succession, towards a high-biomass, high-diversity state, is being retarded.  
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Tree physiology metrics may also be useful for monitoring the progress of forest 

restoration. These metrics include photosynthetic activity, nitrogen concentration, 

water stress and leaf area index (LAI). Context is again critical. High water stress, for 

example, may be a warning signal of restoration failure in a wet forest, but not in a 

seasonal forest. SALAMÍ et al. (2014) reviewed metrics, including normalized 

difference vegetation index (NDVI), greenness index, green normalized difference 

vegetation index and photochemical reflectance index. NDVI, in particular, is widely 

used to classify different land-cover types, for which it is broadly effective. However, 

it has similar limitations to canopy closure metrics, because NDVI saturates at fairly 

low values of LAI (WANG et al., 2005).  
 

 

TECHNOLOGIES FOR FOREST RESTORATION MONITORING 
 

We now turn to technologies that can be used to collect and analyse data for the 

purposes of estimating the metrics, discussed above. We focus on technologies for 

ground-level or low-altitude deployment, which can be feasibly implemented by 

practitioners at reasonable cost. Potential technologies for monitoring forest 

restoration can be divided into i) the platform and ii) the sensors mounted on the 

platform. An illustration of the kids of technologies we consider is shown in Fig. 12.2. 

These technologies, for forest monitoring, are also reviewed in GUIMARÃES et al. 

(2020), although without specific reference to restoration. We recognise that 

satellite imagery represents a valuable source of information for forest monitoring, 

but do not review this, because it is a large and well-developed topic in its own right, 

and in any case, satellite imagery must be calibrated with data from near-ground 

technologies (KELLNER et al., 2019). 

 

Platforms 
 

Potential platforms for forest restoration monitoring are (i) stationary platforms, 

(ii) mobile ground-based vehicles and (iii) unmanned aerial vehicles (UAVs). The 

most straightforward are stationary platforms. They can carry heavy payloads, but 

data are collected only from a single location. Ground-based vehicles overcome this 

limitation, but are restricted to relatively flat, solid paths, free of debris, often in 

heavily managed forests. The most feasible platforms, for automated assessment of 

forest quality over large scales, are UAVs. 
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For forest monitoring, two main kinds of UAV are suitable: (i) rotorcraft and (ii) 

fixed-wing aeroplanes (KOH & WICH, 2012; DANDOIS & ELLIS, 2013; LISEIN et al., 2013; 

ZARCO-TEJADA et al., 2014; GUIMARÃES et al., 2020). COLOMINA & MOLINA (2014) provide 

a useful overview of UAV systems, including sensors and software, for remote 

sensing. Both open-source and commercial software are available for guidance and 

ground monitoring (e.g., Mission Planner). This software is rapidly evolving and 

includes functions for navigation in three dimensions, automatic transect grids and 

the ability to trigger certain actions at specified times or locations.  

Remote-piloted UAVs are widely available, but for truly automated monitoring, 

UAVs should be autonomous. Navigation software work well above the forest 

canopy, but software for autonomous, below-canopy surveys is still largely in 

development. Note that, at the time of writing, legislation governing UAVs is highly 

variable among countries and still in flux. The definition of UAV varies by country and 

usually applies above some weight threshold. Many countries require a permit to fly 

a UAV and UAVs are typically prohibited from flying above a certain height. Forest 

restoration practitioners should be aware of local legislation in order to understand 

the restrictions these impose on automated monitoring (see Chapter 14). 

 

Sensors 
 

Sensors, useful for forest restoration monitoring, include those that measure 

light from different parts of the electromagnetic spectrum, and those that measure 

sound. In the case of light sensors, wavelengths reflected or absorbed by the land 

surface, are detected as pixels of information. Sensors, useful for forest surveys, are 

lidar, visible-light cameras, multi- and hyper-spectral sensors. For forest monitoring 

with conventional cameras, off-the-shelf models (still and video digital cameras) are 

adequate for photogrammetry, including two- and three-dimensional spatial 

reconstructions (see p 176) (DANDOIS & ELLIS, 2010; ROSNELL & HONKAVAARA, 2012). 

Lidar sensors are heavier than conventional cameras (1 kg or more) and more 

expensive, but they collect more precise structural information. While cameras 

record a passive signal of the incident light image falling on the sensor, lidar devices 

transmit a laser signal and record the time taken for light, reflected from surfaces, 

to return to the sensor. Since laser light penetrates thin or incompletely solid 

surfaces, such as canopy leaf layers, reflection may occur at multiple depths from 

the uppermost canopy to the ground surface. The ability of the sensor to record 

these multiple returns, allows lidar to reconstruct multilayer structures. This is 

driving its rapid adoption in forest monitoring (LIN et al., 2011; HEIKKI, 2013; 

TSUBOUCHI et al., 2014; CUSHMAN & KELLNER, 2019; JONES et al. 2020). At present, lidar 
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is prohibitively expensive for many purposes, particularly compared with the low 

costs of basic UAVs. However, the demand for diverse lidar applications is driving 

the development of lighter and cheaper lidar devices, which will make their use for 

forest restoration monitoring more cost-effective (WALLACE et al., 2012).   

Multi- and hyper-spectral sensors collect data over a broad range of wavelengths 

of the electromagnetic spectrum. While conventional cameras have sensors in three 

visible-light bands (red, green and blue), multispectral cameras have sensors that 

cover a greater diversity of wavelengths, from the infrared and visible regions. 

Hyperspectral sensors are able to measure reflected light across the electro-

magnetic spectrum, often from ultraviolet to short-wavelength infrared (400–2500 

nm) within 200 or more consecutive bands (ADÃO et al., 2017). Because forest 

vegetation reflects light beyond the visible range, the additional information, 

provided by multi- and hyperspectral sensors, is of high value for vegetation 

monitoring, particularly for detecting plant species and measuring functional traits 

e.g. stress responses and leaf mass per unit area (ZARCO-TEJADA et al., 2013, ASNER et 

al., 2015, SCHNEIDER et al., 2017, SCHWEIGER et al., 2018). 

 

Localisation technologies 
 

Sensor information from forest surveys, is most useful if location data are 

available. Such data can be used to construct maps of the environment or to add 

information to existing maps. The ideal localisation techno-logy is GPS, but it is not 

available everywhere (e.g., steep valleys or below the canopy (see page 180)). 

Alternative technologies include ultrasound (FUKUJU et al., 2003; MEDINA et al., 2013) 

and ultra-wideband radios (GEZICI et al., 2005). These operate over short distances, 

and communicate their position using ground-based sensors of known position. 

Unfortunately, the set-up costs of such systems can be high. Another option is 

Simultaneous Localisation & Mapping (SLAM) (BACHRACH et al., 2011; DURRANT-WHYTE 

& BAILEY, 2006a; DURRANT-WHYTE & BAILEY, 2006b; RYDING et al., 2015; LI et al. 2016, 

ZAFFAR et al., 2018). With SLAM, inputs from platform-borne sensors, including lidar 

and visible-range cameras, are processed in real time, to create a map of the 

environment that is used for platform navigation. Advances in forest-based SLAM 

are anticipated, driven by demand for military and commercial applications. 

However, the geographical range of UAVs using SLAM is limited by the precision of 

the SLAM software, which decreases with distance, due to error accumulation. 

Despite their limitations, these alternative localisation technologies may serve as 

stepping-stones towards improved GPS, or may be used in conjunction with GPS. 
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Data processing: forest physical structure and tree biomass 

 
Much of the data collected from autonomous vehicles that monitor forests can 

be processed offline. Data may be collected manually by operators, but preferably 

the vehicle would continually transmit data to a base station for intensive post-

processing, and only store enough data on board to navigate within its environment 

(e.g., via SLAM). We now discuss offline processing tools, for assessing forest 

structure from visual imagery and lidar. 

Photogrammetry and stereo-photogrammetry, from aerial photographs of 

forests, have long been applied to estimate stand size, canopy depths and stand 

volumes. The challenge for fully automated monitoring is to design algorithms that 

match or exceed the performance of humans in measuring these forest properties. 

For example, canopy openness can be automatically measured from aerial imagery, 

by applying thresholding algorithms that classify pixels as either canopy or gap, 

according to light intensity values, usually from a single light band. A basic version of 

the technique is straightforward to implement, but efforts should be made to 

exclude obliquely captured images and apply lens-specific, optical corrections, to 

ensure that measurements are standardised by area (JENNINGS, 1999). However, this 

approach has now been made largely redundant by more advanced photo-

grammetric approaches (see below). 

Techniques for estimating forest physical structure from remotely sensed data 

rely on software that can create and analyse point clouds derived from visual 

imagery or lidar. In the case of lidar, techniques developed for manned aerial surveys 

(LISEIN et al., 2013) are mostly transferrable to UAV surveys (e.g. LIN et al. 2011; 

WALLACE et al., 2012; HEIKKI, 2013; ZAHAWI et al., 2015; SWINFIELD et al., 2019). In the 

case of visual imagery, point clouds are constructed by Structure-from-Motion (SfM) 

(WESTOBY et al., 2012; IGLHAUT et al. 2019), an advanced photogrammetry technique 

that reconstructs three-dimensional surfaces by identifying common features across 

multiple two-dimensional images (LISEIN et al., 2013; COLOMINA & MOLINA, 2014). 

Deployment of SfM in forests is possible from point clouds scanned either above 

(WESTOBY et al., 2012; ZAHAWI et al., 2015) or below the canopy (FITZGIBBON & 

ZISSERMAN, 1998; POLLEFEYS et al., 2004; ROSNELL & HONKAVAARA, 2012; PIERMATTEI et 

al., 2019). It does not require camera positions to be known, although this greatly 

aids the process and enables point clouds to be located in absolute space. Both 

proprietary (e.g., Agisoft Photoscan, EnsoMOSAIC, PIX4Dmapper) and open-source 

(e.g., EcoSynth, MICMAC, Visual SfM and Open Drone Map) software is available for 

implementing SfM (GUIMARÃES et al. 2020). The point clouds, derived from SfM, have 

the advantage that densities are orders of magnitude greater than those from 
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airborne lidar, although terrestrial laser scanning and drone-mounted lidar also 

produce very high point densities. Analysis of dense point clouds is computationally 

intensive and therefore, high performance computer services, including clusters of 

graphical processing units and cloud-computing services, improve its feasibility (LAVY 

et al., 2015).  

Point clouds from lidar or SfM can be processed to measure the height and 

structural properties of forest canopies as well as the size of individual trees (WULDER 

et al., 2012). An example of SfM is shown in Fig. 12.3. Canopy height is computed as 

the difference between the canopy and terrain surfaces. The surfaces are con-

structed using algorithms parameterised for site-specific topographic and forest 

conditions. Digital terrain models are estimated by applying statistical smoothing 

algorithms to classified ground points. Consequently, their accuracy is a function of 

the density of true ground returns and topographic variation. Point clouds from SfM 

can produce accurate digital terrain models, when canopies are open or discon-

tinuous (ZAHAWI et al.; 2015, SWINFIELD et al., 2019). When canopies are closed, 

canopy height can be underestimated, but often to a predictable degree and can 

therefore be corrected. Point clouds from lidar can produce accurate digital terrain 

models, even for high-biomass forests on uneven terrain (PATENAUDE et al., 2004; 

WALLACE et al., 2012; ASNER & MASCARO, 2014; VAGLIO LAURIN et al., 2014). An example 

lidar point cloud is shown in Fig. 12.1. Comparison of point clouds from different 

time points can yield information about tree growth, as well as ongoing disturbances 

such as natural tree falls and illegal logging (MILLER et el., 2000). 

Point cloud data can also be processed, to estimate individual tree parameters, 

such as height, stem diameter, crown diameter and volume (DALPONTE et al., 2011; 

WILLIAMS et al., 2019). Tree heights are detected as local maxima within the canopy 

height surface, by scaling the detection window according to tree size. Crowns can 

also be segmented, using algorithms that search for tree edges, based upon changes 

in height or spectral signals between adjacent points (HYYPPA et al., 2001; ERIKSON & 

OLOFSSON, 2005; HOLMGREN & LINDBERG, 2014; WALLACE et al., 2014; TOCHON et al., 

2015). Several algorithms exist to implement crown segmentation; one example is 

shown in Fig. 12.1. The addition of spectral information can aid in segmentation but 

misalignment in space and contrasting spatial resolutions introduces an additional 

layer of complexity. Accurate measurement of particularly heterogeneous canopies 

may require forest-specific allometric relationships between crown diameter and 

tree height, to prevent unrealistically sized crowns from being delineated. Tree 

volume can be estimated using algorithms for individual stem segmentation (e.g., 

KELLNER et al. 2019). 
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Once data on individual tree parameters have been computed, they can be used 

to track tree growth rates or calculate stand-level parameters, such as stem-size 

distributions, biomass and carbon (PATENAUDE et al., 2004; ASNER & MASCARO, 2014; 

VAGLIO LAURIN et al., 2014). Estimates of the dimensions of the tallest or dominant 

sized trees can be used to infer site quality and thus the maximum potential biomass 

that can be attained at any given site, assuming that maximum stocking capacity is 

achievable where edaphic and climatic conditions are optimal. Estimating the 

properties of the sub-canopy is more difficult due to obscuration by the overlying 

canopy, but even here lidar is able to reconstruct vegetation density as the ratio of 

reflected to incident lidar energy. This technique is the basis of the Global Ecosystem 

Dynamics Investigation (GEDI) on board the International Space Station (DUBAYAH et 

al., 2014) and has been implemented successfully using discrete airborne lidar also 

(ARNQVIST et al., 2020). 

Estimating forest biomass and structure, using the techniques described here, is 

most feasible in forests that have relatively low vegetation density or are deciduous, 

facilitating the scanning of comprehensive point clouds from above-canopy UAVs. 

Such forests include most temperate and boreal forests. For dense evergreen 

tropical forests, other approaches, including below-canopy UAVs, may ultimately be 

needed (see page 180). 

 
Data processing: tree diversity 

 
Monitoring tree diversity recovery at a restoration site, following implement-

ation of management interventions, can be challenging. A robust tool for identifying 

tree species automatically would be the holy grail of tropical forest ecology and 

would enable spatial assessments of species distributions on unprecedented scales. 

In forest restoration projects, it would facilitate accurate estimates of both tree 

diversity and tree biomass — the latter via application of species-specific wood 

density values. However, at present, even the best statistical models, and indeed 

expert humans, can identify only a handful of tree species from remotely sensed 

imagery (MARTIN et al., 1998; PU, 2009; ERINS et al., 2011; GARZON-LOPEZ et al., 2013; 

BALDECK et al., 2015; WANG et al. 2019; NATESAN et al., 2020; SOTHE et al., 2019). These 

statistical approaches will continue to improve, and may become adequate for 

species-poor forests, but for species-rich tropical forests it is possible that we will 

never be able to distinguish the hundreds or thousands tree species that coexist in 

them from imagery alone. 
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One general approach to tree species identification is to classify pixels into 

species, based on their spectral properties. This can work for forests with relative 

few tree species, but the complexity of the classification problem increases rapidly 

with tree diversity. The essential problem is that the number of photo-reactive 

molecules and architectural arrangements, found in vegetative tissue, is limited and 

intraspecific phenotypic variation in spectral properties (driven by genotypic 

variation and environmental heterogeneity) is not necessarily low relative to 

interspecific variation. One option is identification based on spectral classification 

from conspicuous flowers, but this depends on surveys being frequent enough to 

capture potentially narrow flowering periods. Another approach is to classify species 

based on their geometry, derived from imagery points clouds. This includes the sizes 

of features such as leaves and branches, and repeating patterns, which can be 

measured using structural or textural metrics. Successful applications to date have 

involved only small numbers of species in temperate forests (e.g., KUMAR et al. 2012; 

OTHMANI et al. 2014; TORRESAN et al. 2017; SOTHE et al., 2020; KRŮČEK et al. 2020). 

If species-level identification of trees proves infeasible in species-rich forests, an 

alternative would be to separate species into broad groups, such as functional 

groups. For example, disturbance-responsive species, such as pioneer trees, can 

have especially large leaves and open crowns, and concentrations of chemicals that 

support high rates of photosynthesis (NOGUEIRA et al., 2004). Another alternative is 

to measure the overall spectral or textural signature or diversity of a forest and to 

map this to estimate species diversity using pre-established relationships (DALPONTE 

et al., 2008; FRICKER et al., 2015). Such approaches may be sufficient during the early 

stages of succession, when diversity is relatively low, but perhaps not during the later 

stages of succession, when finer gradations of diversity become important for 

assessing restoration progress. 

More sophisticated methods of tree species identification could improve 

biomass estimation at forest restoration sites as well, by allowing species-specific 

wood density estimates to be used in calculations. In the long term, it may be 

feasible to identify trees from DNA samples taken from the stem itself. At first, this 

would require UAVs to collect field samples and return them to the lab; later, in situ 

identification may be possible. The latter may sound implausible, but the cost of 

sequencing has fallen by over five orders of magnitude since the turn of the century 

and the size of sequencing equipment has shrunk concurrently. It will take 

substantial human resources upfront to create the DNA markers for thousands of 

forest species, but in some cases this work is already being done (KRESS et al., 2009; 

LAHAYE et al., 2008; STEELE & PIRES, 2011; KRESS 2017). 
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Batteries 
 

Over the next few decades, the main factor, limiting development of 

autonomous forest monitoring, will be battery technology (GUIMARÃES et al. 2020), 

particularly below the canopy, where energy is constantly required to manoeuvre 

UAVs in three dimensions. In recent decades, progress in many technologies, 

relevant to automated forest monitoring, has been rapid e.g. micro-processor speed 

and DNA sequencing, but battery technology has lagged (SCHLACHTER, 2013). 

Whereas the transistor count on microprocessors has doubled roughly every two 

years, the doubling time of battery energy density has been 10 years or more. Indeed, 

battery technology is the current limiting factor in the development of many 

technologies, from vehicles to smart phones. The limitations of UAV batteries also 

prohibit the use of the most powerful sensors, because they are heavy and energy-

demanding. 

We predict that within a decade or two, most of the technical challenges of 
automated forest monitoring will be solved, but the range of vehicles and therefore 
the scope of monitoring efforts will still be limited by batteries. In the longer term, 
revolutionary battery technologies may emerge that will alleviate these limitations. 
In the meantime, innovative solutions may expand the potential scale of below-
canopy surveys. For example, UAVs with the ability to float or perch would improve 
energy efficiency, while solar-powered charging stations could greatly extend 
operating times in the field. Alternative fuels, such as hydrogen fuel cells, have 
recently been developed for UAVs and should also be considered. 
 

 
ABOVE- vs BELOW-CANOPY MONITORING 

 
Above-canopy surveys are by far the most widespread and feasible strategy for 

forest restoration monitoring at present. They can be carried out with low risk of 

collision with trees or other objects, which means they can follow preset trajectories 

or waypoints and can be conducted by either fixed-wing UAVs or rotorcraft. Because 

fixed-wing UAVs have longer battery lives than rotorcraft, a single above-canopy 

flight can last from hours to almost indefinitely, as advances in solar powered flight 

have demonstrated (SACHS et al., 2009). Furthermore, can easily connect to Wi-Fi, 

telecommunications, and GPS networks. Many studies have reported successful 

flights of UAVs above the forest canopy or through cleared areas within forests 

(DANDOIS & ELLIS, 2010; LIN et al., 2011; WALLACE et al., 2012; ANDERSON & GASTON, 

2013; ZAHAWI et al., 2015; JAAKKOLA et al. 2017; KELLNER et al. 2019), many using 

autonomous navigation.  
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Below-canopy monitoring is a useful complement to above-canopy monitoring. 

It can reveal a wealth of information about a forest’s internal structure, including the 

distribution of stems and their biomass. Indeed, data from below-canopy surveys of 

some kind (whether automated or not) can be necessary to calibrate above-canopy 

methods for estimating forest biomass and structure. Below-canopy monitoring also 

opens up new possibilities for automated tree identification, based on bark or DNA 

samples. To date, most applications of automated below-canopy forest sensing have 

used stationary platforms (Watt & Donoghue, 2005; Forsman & Halme, 2005; 

McDaniel et al., 2012; Heikki, 2013; Tsubouchi et al., 2014). Other applications have 

involved humans carrying a sensor around inside forests (Ryding et al., 2015). Such 

methods do not constitute automated forest monitoring, but at least demonstrate 

the potential usefulness of mobile, below-canopy sensors. Several studies have used 

ground-based vehicles (usually remote-piloted, but sometimes autonomous), carry-

ing sensors in forests (Miettinen et al., 2007; Rasmussen et al., 2013), but the 

application of these is likely to be limited to sparse, young forests or well-maintained 

plantations: most natural or semi-natural forests present too many obstacles (fallen 

logs, stumps, etc.) to ground-based vehicles. 

The best long-term prospects for automated, large-scale, below-canopy, forest 

monitoring lie in rotorcraft, although flying rotorcraft autonomously through a 

forest understorey is fraught with technical difficulties. Navigation and collision 

detection are challenging tasks, compounded by unreliable GPS signals, due to 

interference or attenuation of the signal by the forest canopy. Rotorcraft and the 

advanced sensors required for navigation are energy intensive, which severely limits 

battery life. Nevertheless, some progress has already been made with relatively 

simple tasks, such as estimating tree diameters in a stand of planted trees (CHISHOLM 

et al., 2013). 
 

SUMMARY AND CONCLUSIONS 
 

We see a bright future for automated forest restoration monitoring, driven by 

exciting new and imminent technological developments in both software and 

hardware. However, for this technology to be effective, careful thought must first 

be given to fundamental practical considerations about how progress towards 

restoration is best assessed. We have proposed that restoration monitoring should 

focus on indicators that are relatively straightforward to measure and that reflect a 

broad array of ecosystem services. We have proposed tree biomass and tree 

diversity as two such broad indicators. Furthermore, we have emphasised the 

importance of defining baselines and of setting targets for restoration that are 
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appropriate for the landscape context, i.e., that match, as closely as possible, the 

attributes of the original forest at the same location and that consider what is 

realistically attainable, given the current landscape matrix. 

The technologies, on which automated forest restoration monitoring relies, fall 

into three broad categories: UAVs, sensors, and data-analysis software. Of these, 

UAVs, in particular, are an enabling technology for automated forest restoration: 

they permit cost-effective tracking of recovery processes over large spatial scales 

and at fine temporal resolutions. Surveys, based on UAVs, have further advantages 

in that they can be implemented rapidly in response to demand (e.g., a mast fruiting 

event) and data can be processed in near real time to direct management actions. 

Automated surveys are also likely to be more reliable than human-based ones. While 

they are not error-free, the errors that do occur are likely to be more consistent than 

errors in human-collected data and therefore easier to control. 

Restoration practitioners can already draw inspiration from several recent 

studies that describe successful above-canopy forest surveys with autonomous 

fixed-wing drones. However, comprehensive restoration monitoring, at least in high-

density tropical forests, requires not only above-canopy surveys but also below-

canopy surveys, which are much more challenging (Fig. 12.2). To date, below-canopy 

surveys have been focussed on very specific tasks, such as high resolution, three 

dimensional, lidar scanning of small areas. Future advancements, including the use 

of SLAM to enable autonomous movement through vegetation, will expand the 

areas accessible to below-canopy UAVs. 

Another major outstanding challenge for forest restoration monitoring is 

automated tree species identification. With potentially thousands of tropical tree 

species in a single square kilometre of forest (PLOTKIN et al., 2000), it seems unlikely 

that algorithms that rely on coarse structural or spectral characteristics, derived 

from image data, will ever consistently classify the majority of species. A better 

option, in the long term, may be for UAVs to collect genetic material for DNA 

barcode analysis — advances in genetic sequencing and barcoding are currently 

revolutionising species identification (KRESS et al., 2009; ZHANG et al., 2016; KRESS 

2017). 

Perhaps the biggest long-term limitation of above-canopy and especially below-

canopy forest restoration monitoring is battery technology. This limitation is unlikely 

to be overcome soon, since, historically, the rate of improvement of battery 

efficiency has been slower than that of other technologies. 

We emphasise that this review has been intentionally broad-ranging and has 

given only an overview of each relevant technology. We direct anyone, intending to 

carry out automated forest monitoring, to further reading in our reference list, in 
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particular recent reviews on topics including UAVs (TORRESAN et al. 2017; GUIMARÃES 

et al. 2020), SLAM (LI et al. 2016), SfM (IGLHAUT et al. 2019), DNA barcoding (KRESS 

2017) and automated tree identification (WANG et al. 2019). 

We foresee a near future, in which forest restoration monitoring relies on a 

combination of coarse, large-scale, above-canopy surveys and detailed, smaller-

scale, below-canopy surveys (Fig. 12.2). The former will include analyses of satellite 

imagery, which is becoming increasingly available at high resolutions and large scales, 

heralding a “golden age” in remote sensing (KELLNER et al., 2019). Initially, humans 

will continue to be heavily involved in some aspects of monitoring. However, the 

rising costs of manpower, falling costs of technology and its rising quality will all 

catalyse the move towards automation. In recent years, rapid development of both 

UAVs and sensors has been driven by military, engineering and commercial 

applications. These drivers should continue to deliver technological windfalls for 

forest restoration in the years to come. 

 

Future priorities for research include: - 

 

1. broader implementation of existing technologies, to assess which of 

them are already effective and identify those in need of improve-

ments;  

2. further development of tools for automated tree species detection 

and recognition;  

3. reliable techniques for co-registration of geolocated data, to improve 

the precision of multi-temporal assessments;  

4. a solution to below-canopy, autonomous, navigation problems;  

5. creative workarounds to battery-life limitations, while we await the 

development of next-generation battery technology and 

6. effective calibration of metrics from satellite imagery with data from 

ground-level and low-altitude surveys. 
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Figure 12.2 – Automated forest monitoring is likely to comprise a mixture of above- and 
below-canopy technologies, working together, to measure and track forests during the 
restoration process. This schematic demonstrates how one such integrated system may 

be designed, with fixed-wing unmanned aerial vehicles (UAVs) collecting data at the 
landscape scale, supplemented by more precise measurements from rotorcraft or 
ground-based UAVs, working at lower altitudes and below the canopy. Data are 
transmitted back to researchers either directly or indirectly via other drones and 

telecommunications networks.  
 
 
 
 
 



                                                                                                                           Chapter 13 

193 

 

 
 
 
 
 

 

Figure 12.3 - A 3D model of 

regenerating secondary 

forest and oil palm at 

Hutan Harapan, Indonesia, 

produced using Structure 

from Motion (SfM):- 

(A) The forest surface is 

shown in true-colour, 

reconstructed from UAV 

imagery.  

 

 

 

(B) A false-colour image 

shows the result of 

automated ground 

classification (ground 

points are brown; non-

ground points are white).  

 

 

 

 

 

(C) The canopy height 

model produced via 

subtraction of the ground 

elevation from the model 

surface.  

 


