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Figure 14.3 A bat acoustic monitoring station; a bat detector is kept in the box  

(Photo: Sara Bumrungsri) 

 

 
 

Figure 14.4. A heterodyne bat detector (left) and a time expansion bat detector (right) 

(Photo: Sara Bumrungsri) 
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AUTO-MONITORING WILDLIFE RECOVERY 
 

George A. Gale1and Sara Bumrungsri 2 
  

ABSTRACT 
 

Wildlife monitoring during forest restoration addresses such questions as: 

What species re-colonize or disappear from restored areas? How many 

individuals are present? What are the population trajectories? In this review, 

we focus on issues related to automating surveys of forest birds and mammals, 

particularly bats. For both birds and mammals, the need to automate data 

collection and analysis is clear, but several constraints must be overcome, 

before such automation becomes practical, compared with labour-intensive, 

conventional methods. Currently, wildlife species can be recognized and their 

abundance estimated by using audio recording and photography. However, 

species recognition software, using audio data, generally performs poorly, 

compared with humans, particularly under field conditions, where such 

systems fail to distinguish multiple overlapping calls and separate them from 

interfering background noises. Similarly, for images, highly variable lighting 

and lack of clarity of camera-trap images often confuse auto-recognition 

software. Nevertheless, automated systems continue to improve, and it is 

likely that they will achieve parity with humans in the foreseeable future. In 

the near-term, they will have the ability to save considerable amounts of time, 

by searching through large numbers of files, to narrow searches for particular 

species and transmitting such files wirelessly over networks. Furthermore, 

outside of cellular network coverage, drones can be used to collect image or 

audio data from wireless devices in the field. Thus, while these techniques are 

currently far from being highly accurate, inexpensive and practical for broad-

scale surveys, it is not difficult to imagine a future when assessments of the 

wildlife recovery that is expected to occur with forest restoration will become 

increasingly more automated. 
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OBJECTIVES OF MONITORING  

 

Wildlife monitoring has a long history, dating back to the 1890’s (PETERSEN 1896). 

Wildlife monitoring typically starts with the basic question “how many individual 

animals are there in a population?” And if we are able to answer this question 

through time, then it is possible to address questions like “what is the trajectory of 

the population (declining, increasing, or stable)?” In the context of forest 

restoration, we need to determine: Which species have recolonized the restoration 

sites? And what are their relative abundances? Hence, we can answer questions 

regarding the relative representation of different feeding guilds, particularly 

frugivores that are likely to disperse seeds into regenerating sites, and perhaps 

threatened species.  

Such questions are particularly pertinent, because community structure changes 

markedly, as vegetation regenerates from relatively open, perhaps mostly weedy 

plants, to closed canopy forest. More recently, occupancy, which uses presence/ 

absence data, to assess the proportion of sample sites occupied by a target species, 

can also be used to monitor wildlife. Such methods may be particularly useful for 

broad scale, long-term assessments (VAN STRIEN et al., 2013). While the basic 

techniques of wildlife monitoring are relatively straightforward, several issues 

complicate the process such as: observer bias (BETTS et al., 2007), imperfect 

detectability (MACKENZIE et al., 2002) and particularly, the prohibitive costs of 

sampling over large spatial and temporal scales, at sufficiently fine resolutions 

(APPLEGATE et al., 2011). Another complication is that species identification in the 

field and even from camera-trap photographs often requires extensive training 

and/or experience. Automation of survey processes would reduce some of these 

complications.  

 
Which wildlife species to monitor? 

 
Although monitoring a small set of species, as indicators of forest recovery, has some 
drawbacks (CARIGNAN & VILLARD, 2002), birds have been used widely because they 
provide critical ecosystem services (particularly seed dispersal), respond rapidly to 
change, are relatively easy to detect and may reflect changes at lower trophic levels 
(e.g., insects, plants) (SEKERCIOĞLU et al., 2004). Mammals can also be useful 
indicators of ecosystem health, hunting pressure (KIFFNER et al., 2014) and seed 
dispersal potential, particularly bats (SRITONGCHUAY et al., 2014). However, mammals 
are far more difficult to survey than birds—as most do not vocalize frequently 
(except bats and some primates). They often occur naturally at low densities and 
they are frequently nocturnal. In this review, we focus on forest birds and mammals, 
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including bats. For both birds and mammals, the need to automate data collection 
and analysis is clear, but several constraints must be overcome, before such 
automation becomes practical, compared with labor-intensive, conventional 
methods. 
 

CURRENT STATE OF THE ART 
 

Birds: species identification 
 

For birds, one of the main constraints is reliable species identification. In tropical 

forested habitats, 90-95% of bird detections are by ear (GALE et al., 2009), requiring 

extensive experience. Even in more open habitats, a significant percentage of bird 

identifications are by sound rather than sight. However, the complexity of bird song, 

‘background’ noises (present in most habitats) and multiple overlapping songs that 

occur in many bird communities make automated species identification a 

challenging task. Interestingly, automation of bat species recognition is far more 

advanced (SCOTT, 2012) (see below). For the purposes of thinking about automated 

sound analysis, there are at least five broad categories of discrete sound unit shapes 

that compose bird sounds: i) segments with constant frequency, ii) frequency-

modulated whistles, iii) broadband pulses, iv) broadband with varying frequency 

components and v) segments with strong harmonics (BRANDES, 2008). If we think of 

those discrete bits of sound as syllables, then this complexity can range from simple 

repeated sequences of syllables to complex sequences of syllables with patterns that 

rarely repeat. We can add to this complexity field situations that make detection and 

classification more difficult such as when encountering duets, choruses of 

overlapping songs, intentional call masking or mimicry. Finally, difficulty in creating 

automated classifiers can arise from species that have regional dialects, very large 

song repertoires and even improvisational songs (BRANDES, 2008). 

Overall, there are several problems with identifying all species present in noisy 

recordings, containing multiple, simultaneously-vocalizing birds (CHU & BLUMSTEIN 

2011). A related problem is detection of one or a few target species (BARDELI et al., 

2009), amidst other sources of noise, including other birds, and the detection of 

birds that make a particular type of call (e.g., tonal sounds) (JANCOVIC & KOKUER, 

2011). 
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Automated analysis of bird sounds 
 
The analysis process has two primary parts: i) call-feature extraction and ii) call 

classification. The choice of which features to measure depends mostly on the 

structure of the target calls, whereas the choice of the classifier depends on the way 

in which the feature measurements distinguish the various types of target calls 

(BRANDES, 2008). For example, features may include call duration, highest frequency, 

lowest frequency, loudest frequency, average bandwidth, maximum bandwidth and 

average frequency slope.  

An entirely different approach is to use stochastic sequence modelling 

techniques to classify sounds, based on short-time measurements of sound features 

and how these features change in time. This is accomplished with hidden Markov 

models (HMM), a technique widely used for human speech recognition (TRIFA et al., 

2008). However, perhaps the most common problem for automated identification 

of bird sound recorded in natural settings is background noise. It not only limits bird 

song detection, but also cause misclassifications (BAKER & LOGUE, 2003). The most 

common method for dealing with noise is to limit the sound analysis to the 

frequency bands where the target sounds are found by using band-pass filters. 

Unfortunately, these methods can also eliminate many of the target sounds if they 

overlap the high noise part of the spectrum (BRANDES, 2008).  

Relatively recently, a multi-instance multilabel (MIML) framework for supervised 

classification has been used (ZHOU & ZHANG, 2007). The main idea of MIML is that 

objects to be classified are represented as a collection of parts (referred to as a “bag-

of- instances”) and are associated with multiple class labels (BRIGGS et al., 2012). In 

this application, the objects to be classified are recordings, the parts are segments 

of the spectrogram, corresponding to syllables of bird sound, described by a feature 

vector of acoustic properties and the labels are the species present (BRIGGS et al., 

2012). All supervised-classification algorithms require some labeled training data to 

build a predictive model. A major advantage of MIML is that the only training data 

required is a list of the possible species present, rather than a detailed annotation 

of each segment, or training recordings, containing only a single species (which is 

required in most prior work) (SELIN et al., 2007). For recordings containing multiple, 

simultaneously-vocalizing bird species, it is less labor intensive to construct the 

former type of labels (BRIGGS et al., 2012). 

The accuracy of such methods is still relatively low, compared with conventional 

techniques with human observers. For example, researchers using MIML had 20% 

false positives and 35% false negatives in 20 trials containing one to four species per 

trial, with a total of 13 possible species, (BRIGGS et al., 2012). Other methods, using 
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complex descriptive statistics successfully recognized 317 out of 384 (82.5%) calls 

correctly for one species and 177 songs were correctly discovered out of 230 (77.0%) 

of a second species (POTAMITIS et al., 2014). Although specific accuracy relative to 

standard human observers appears to be lower for these automated techniques, 

overall, automatic species recognition can considerably reduce the search time for 

a human observer, when searching through thousands of audio files containing 

many different species (POTAMITIS et al., 2014).  

 

Individual recognition 

TERRY & MCGREGOR (2002) successfully used and compared three basic types of 

neural networks to identify individual Corncrakes (Crex crex). Since Corncrakes have 

calls that consist of broad-band pulses, with distinct timing, they found that the 

pulse-to-pulse timing is the most important feature to measure. Others, working 

with the same species, also found that they could assess the probability as to 

whether two calls belonged to the same individual or not, but definitive 

identification was not possible, if the number of individuals was not known 

beforehand. This was also shown in other species (EHNES & FOOTE, 2015). 

Furthermore, individual recognition can be used to estimate population sizes, using 

a mark-recapture framework (STEVENSON et al., 2015).  

 
Occupancy and abundance estimation 

 
Recent studies have demonstrated that species abundances of both birds 

(DAWSON & EFFORD, 2009) and frogs (STEVENSON et al., 2015) can be obtained using 
acoustic detection.  

 
Hardware for automated bird recording 

 

The basic components of hardware for use in automated recording of bird sound 
are a microphone, audio recorder, power supply, a mechanism for initiating and 
ending recordings and a weather-proof housing for the equipment. The first and 
simplest approach is to design a scheduling timer through a hardware interface to 
control a stand-alone commercial recorder. A second approach is to write software 
for a programmable recording device, such as a personal digital assistant (PDA) or a 
smart phone (BRANDES, 2005). The third and most complex approach is to develop 
recorders with single board computers (FITZPATRICK et al., 2005). Furthermore, in 
theory, recorders could be deployed into the field by UAVs as some are sufficiently 
lightweight (<100 g) (FURNAS & CALLAS, 2015). 
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BRANDES (2008) recommended that with automated recorders, omni-directional 

microphones could be used instead of directional microphones, because it is not 

possible to know a priori from where sounds will originate. Single-element, omni-

directional microphones can be effective, but using a small array of microphones to 

create a more sensitive beam-pattern can increase effectiveness e.g. the linear 16-

element microphone array (<15 cm in length), designed by the Bioacoustics 

Research Program at the Cornell Lab of Ornithology for use with their ARUs 

(autonomous recording units). They are most sensitive to sound around the axis of 

the microphone array and least sensitive in the direction pointing from each end. By 

placing this microphone array in the canopy hanging downward, it is sensitive to 

sound originating from any direction within the canopy. A second approach to 

improving omni-directional microphone gain is to use a specially designed 

waveguide to collect and amplify the sound before it reaches the microphone 

element. For further details see BRANDES (2008). 

 

Software for automated bird recording 
 

The review by BRANDES (2008) made several suggestions regarding organizations 

that provide software for acoustic sampling. A few commercially available software 

packages are used to analyze and develop automatic detection of bird sounds. The 

Extensible Bioacoustics Tool (XBAT) developed and distributed by the Bioacoustics 

Research Program at the Cornell Lab of Ornithology, has been particularly useful in 

developing avian sound-recognition algorithms (FIGUEROA & ROBBINS, 2008). It runs 

as a toolbox within the MATLABH mathematical programming environment. Other 

relevant software available includes Song Scope, sold by Wildlife Acoustics and 

SyrinxPC, provided by the University of Washington. 

 

List of Web Addresses relevant to acoustic sampling (from BRANDES, 2008): 

 

1. Borror Laboratory of Bioacoustics https://blb.osu.edu/ 

2. Cornell University’s Bioacoustics Research Program 

 http://www.birds.cornell.edu/brp/ 

3. Hidden Markov Model Toolkit http://htk.eng.cam.ac.uk/ 

4. Macaulay Library of Natural Sound http://macaulaylibrary.org/ 

5. Oldbird, Inc. http://www.oldbird.org 

6. River Forks Research Corp. http://www.riverforks.com/ 

7. Wildlife Acoustics, Inc. http://www.wildlifeacoustics.com/ 
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CURRENT STATE OF THE ART 
 

Bats: species recognition and automated species classification 
 
The main constraint when studying bat communities is the difficulty of obtaining 

visual observations. Furthermore, bat calls are mostly inaudible. Thus, before 
acoustic sampling became possible, the most reliable species records were obtained 
by capturing bats in mist nets or harp traps. For thinking about automated species 
recognition, bats can be divided into two groups: fruit/nectar- eating bats and insect-
eating bats. Old World, fruit/nectar bats can be identified to genera by their external 
morphology, especially their face, so camera trapping is needed. On the other hand, 
species of insectivorous bats, which produce echolocation calls, can be identified 
using echolocation call analysis.  

Automated recognition and monitoring of insectivorous bat species is plausible 
because they emit echolocation calls for navigation and communication. These calls 
are characteristic and often species-specific. Compared with birdsong, bat 
echolocation calls are simpler and easier to identify using automated systems. 
Typically, bat calls can be classified into two types: i) quasi-constant frequency and 
ii) broadband frequency-modulated. Harmonics are usually present in bat calls and 
the harmonics with maximum energy (seen from spectrograms) are used for species 
identification. Similar to birds, automated monitoring requires recording and 
analyzing the echolocation calls. A bat detector, which converts inaudible (>20 kHz) 
calls to the audible range (<20 kHz), is used to record bat calls. During the last two 
decades, acoustic bat surveys, using bat detectors (Fig. 14.1 & Fig 14.2), have been 
widely used to study distributions, activity levels and habitat use and to monitor 
population trends of bat species of concern, both at local and regional scales (WALSH 

et al., 2004). Bat detectors can also be used with canopy-foraging species and bats 
which fly higher above the ground, provided their calls are loud enough. However, 
bat detectors have their drawbacks. They cannot determine the number of bats from 
the number of calls produced. Thus, a relative bat activity index is used, instead of 
the number of bats present. Researchers use the number of ‘bat passes’ to index 
relative abundance. In addition, acoustic sampling is much less effective for bats that 
produce faint calls (e.g. small gleaning species). Thirdly, some nocturnal insects (e.g. 
cicadas), which produce high frequency noises (up to 50 kHz), may partly interfere 
with bat acoustic sampling. 
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Hardware for detecting bats  
 
There are four types of bat detectors: heterodyne (Fig. 14.2), frequency-division, 

time-expansion (Fig. 14.2) and full-spectrum.  

Heterodyne bat detectors (like radio-receivers) tune to a particular frequency (of 

bats). If flying bats produce such a frequency, the apparatus detects it. It is the most 

sensitive of the detectors and can register very weak signals, but is limited to a 

narrow frequency range. Thus, heterodyne detectors are useful for monitoring 

single species, but it is usually not possible to save frequency information.  

Frequency-division detectors use a broadband technique (i.e. the entire 

ultrasonic range is transformed at all times). The transformed frequency is usually 

one tenth of the original frequency. Thus, calls of 70 kHz in 5 ms generate an audible 

output at 7 kHz in 5 ms. They are less sensitive than heterodyne detectors, as they 

have a minimum threshold level. Signals below the threshold are not transformed. 

However, frequency division bat detectors provide more information about 

recorded calls and they can be used for sound analysis. The fundamental frequency 

is retained and pulse duration and other temporal parameters can be measured. 

Output is in real time and can consequently be used to continuously monitor bat 

activity, although some physical information of the calls is lost.  

Time expansion detectors also use a broadband technique. They sample and 

digitize a signal and play it back over an expanded time. The time expansion factor 

can vary from 10-32, but 10 is commonly used. Since it plays back at slower speeds, 

the output frequency is lower and the pulse is longer. In using, for example, a 10x 

time expansion bat detector, a call of 70 kHz and 5 ms will play back at 7 kHz and 50 

ms. All the physical properties of signals including the harmonics are virtually 

preserved and output is excellent for sound analysis. Once expanded, calls can be 

recorded via a recorder or directly recorded by a computer. This type of bat detector 

is suitable for studies of social behavior, as well as species identification. However, 

this system cannot record during playback. Thus, it cannot continuously monitor bat 

activity. With a 10x expansion, the system samples only 7-9% of the available time.  

Full-spectrum detectors record all frequencies. They sample at very high rates to 

capture all signal information and output it in real-time, so we get not only the 

details of call structure (as with time expansion systems), but also the real-time 

continuous monitoring (as with frequency division systems). They enable a very 

detailed analysis of the sound and a clearer sonogram, compared with frequency- 

division systems. Full-spectrum detectors are often used for passive monitoring, 

where a researcher does not need to be present to save recorded calls. 
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Although frequency-division detectors produce files that are approximately one 

tenth the size of those produced by time expansion detectors, their recorded calls 

are much less informative; hence species identification is more difficult, especially 

where calls are less well-documented or with relatively higher species richness. In 

some models, time expansion bat detectors provide a noise triggering option 

(allowing the device to start recording as soon as sound is detected), to save 

recording space. In most models, an on-off timer is provided, to save battery power, 

allowing batteries to last up to a month. The most fragile part of these bat detectors 

is the microphone, which is sensitive to humidity. Generally, most models of 

frequency division, time expansion and full-spectrum bat detectors use directional 

microphones. However, some models offer omni-directional microphones, which 

are less sensitive. Prices vary considerably; although heterodyne detectors are 

relatively inexpensive (under US$ 100 as of the year 2016), other types are generally 

higher in price, sometimes more than US$ 1,000. 

 

Manual and automated analysis of bat sounds 
 
Only recently has automated analysis of bat calls been available. However, 

manual call analysis is still needed for many areas of the world because call 

databases for automated call identification software are available only for bats in 

Europe and North and South America. Commonly-used manual call-analysis 

software include Batsound and Avisoft. Recorded calls are filtered, to delete 

background noise, and then six parameters, from the call harmonics with the most 

energy, are measured: call duration (ms), frequency at maximum energy, frequency 

at half of the call’s duration, frequency at beginning of call and inter-pulse interval 

(PREATONI et al., 2005). Manual call measurement is time-consuming. Fortunately, up 

to 19 characteristics of an echolocation call can be automatically measured, with the 

free software available in the program R (SILVA, 2014). This identifies calls using 

discriminant function analyses (DFA) to compare recorded calls with those of known 

species (reference calls). Another call-identification technique uses artificial neural 

networks (ANNs). Neural networks are “taught” to recognise call characteristics of 

known species and when calls of unknown species are submitted, ANNs can classify 

them. This approach has been successfully used for dolphins and bats. PARSONS & 

JONES (2000) achieved an 87% success rate when identifying 12 bat species in Britain 

(with success rates for each species ranging from 75% to 100%). They also performed 

DFA, but the percentage of correct identification was lower; 79% overall. Similarly, 

RUSSO & JONES (2002) achieved an 82% overall success rate, using DFA to identify 20 

bat species in Italy. PREATONI et al. (2005) compared DFA with ANNs to distinguish 
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between bat species in the family Vespertilionidae. DFA had a higher correct 

identification rate, but both were 100% correct when identifying species of the 

Rhinolophidae. The efficacy of both DFA and ANNs depend on the quality and 

breadth of training data since they both “force” unknown calls into the groups 

predefined by such data (JONES et al., 2000).  

For automated call analysis, several automated classifier software packages are 

now available. These include SonoBat, Kaleidoscope Pro, Bat Call Identification 

(BCID), EchoClass and SonoChrio. These packages are helpful where call databases 

are available, such as North America and Europe. Some of them only work with call 

files of particular formats (e.g. zero-crossing, wave files), produced from bat 

detectors. However, these call files can be converted to different formats. The cost 

of these programs is ca. US$ 1,500. Currently, automated call classifiers have several 

limitations. Typically, they do not include all call characteristics in their analyses, such 

as amplitude-time data. Consequently, they only work well with species that have 

distinct frequency characteristics. They are most useful where the call characteristics 

of every species in a community are well-understood. In addition, results from 

automated classifiers still need manual verification.  

In summary, automated classifiers are still in their infancy and more research 

and development are needed to truly automate bat surveys (review by RUSSO & 

VOIGT, 2016). 

 

Bat species abundance/density 
 

As bat detectors are not able to distinguish individual bats, an index of relative 
abundance, based on the number of recorded calls or ‘bat passes’ of each species, 
is used. A bat pass is defined as an echolocation call with at least two consecutive 
pulses. However, with the Anabat frequency-division bat-detector for example, 
researchers can use the number of files with calls of a particular species as an 
abundance index. Using this protocol, bat researchers could quantify habitat 
use/selection of particular bat species in restoration sites.  

 
Internet sources for bat detectors and automated classifier software: 
 

1. http://batdetecting.blogspot.com/ 

2. https://www.bats.org.uk/our-work/training-and-conferences/training-
for-ecologists/using-bat-detectors 

3. https://batmanagement.com/collections/software 
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TERRESTRIAL MAMMALS 
 

Camera trapping 
 
For assessing communities of medium- to large-bodied terrestrial mammals, 

camera trapping is the most reliable method (CHUTIPONG et al., 2014) (e.g., Figs. 14.3 

& 14.4), although identification of species from photos is still problematic, because 

of the level of experience and expertise required (MEEK et al., 2013). Researchers 

have been estimating abundance of large mammals with camera traps for more than 

two decades (KARANTH & NICHOLS 1998), particularly large cats such as tiger (Panthera 

tigris) (KARANTH & NICHOLS, 1998). However, extensive manpower is needed to check 

and retrieve data from traps. Currently there are study plots where cameras have 

been networked to run continuously, but areas sampled are small (~10 ha) (KAYS et 

al. 2009). Some commercially available trail cameras have wireless support, such 

that photos and video can be sent through text messages and email within 90 

seconds after an animal has passed triggering the trap, but they require a cell phone 

signal. To overcome this limitation and allow remote data collection from traps 

outside the ranges of cellular networks, drones are being developed as “data mules”. 

For example, the Wadi Drone (http://wadi.io/) homes in on Wi-Fi signals emitted by 

camera traps and circles the traps until all images are uploaded to the drone, which 

then returns to base. The traps are powered by solar cells so no battery changes are 

needed. Presumably, a similar system could be used to retrieve audio files. Pattern 

recognition and other data management software have also been used with camera 

trap photos to identify species (FEGRAUS et al., 2011) or individuals within a species 

(HIBY et al., 2009). Drone-mounted cameras (including thermal/infrared imagery) 

have also been used to accurately detect some species of wildlife, although over 

relatively small areas (Christie et al. 2016). 

 

THE NEXT STEPS 
 

Currently, wildlife species can be recognized and their abundance estimated 

using automated processes, both for audio data and images. However, species- 

recognition software generally performs poorly compared with humans, particularly 

under field conditions, where multiple calls overlap and background noises interfere 

with and obscure audio data, and highly variable lighting and limited image clarity 

from camera traps confuse image-recognition systems. Nevertheless, automated 

systems continue to improve and it is likely that they will achieve parity with humans 

in the foreseeable future. In the near-term, they will have the ability to save 

http://wadi.io/
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considerable amounts of time by searching through large numbers of files to narrow 

searches for particular species for example, and such files can be transmitted 

wirelessly over networks. Furthermore, outside of cellular network coverage, drones 

can be used to collect image or audio data from solar powered, wireless devices in 

the field. Thus, while these techniques are far from being highly accurate, 

inexpensive and practical for broad-scale surveys, it is not difficult to imagine a 

future where assessments of the wildlife recovery that is expected to occur with 

forest restoration will become increasingly more automated.  

 
 

FURTHER DISCUSSION 
 

One of the important issues for automated wildlife monitoring is how to improve 

the accuracy of automated systems, such that they are on a par with or even less 

biased than human observers. One critical set of experiments/research areas 

towards this goal is field validation. Field validation essentially requires placing 

automated devices where target species and their abundances are precisely known. 

Although such sites are rare, particularly in the tropics, they do exist (e.g., Gale et al. 

2009). We therefore suggest that a rich opportunity for collaboration is possible 

between researchers who are interested in automated monitoring and those 

running long-term wildlife-monitoring sites. 
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Figure 14.3 - A Large Indian civet Viverra zibetha a common and regionally important seed 

disperser, photographed with a trail camera in Thung Yai Naresuan Wildlife Sanctuary 
(Thailand), April 3, 2011. Populations of species with unique, individual markings can be 
monitored during restoration using automatic camera traps (photo: Wanlop Chutipong). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 14.4 – Thai researchers setting a camera trap (photo: Wanlop Chutipong) 


