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Figure 3.1. Tree crown map produced manually from a high-resolution aerial image of 

Barro Colorado Island (Panama).  Mapped species: Jacaranda copaia (A), Attalea 

butyraceae (B), Tabebuia guayacan = Handroanthus guayacan (C) and Astrocaryum 

standleyanum (D). Photo by Marcos Guerra 

 

Figure 3.2. Criteria used for manual identification of tree crowns of different species 

from high-resolution aerial images of Barro Colorado Island (Panama).  
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APPLICATIONS OF REMOTE SENSING FOR TROPICAL FOREST RESTORATION: 

CHALLENGES AND OPPORTUNITIES 

 
Dawn Frame1 and Carol X. Garzon-Lopez2 

 

ABSTRACT 

The tremendous physical and material efforts required to accurately 

assess forest degradation and to plan and monitor vegetation recovery using 

conventional ground surveys, often limit the success of tropical forest 

restoration projects. Remote sensing has become an important tool for 

biodiversity monitoring, ecological studies and climate change assessments. It 

has enormous potential to automate assessments of forest degradation and 

to standardize and increase accuracy of information at multiple temporal and 

spatial scales throughout the forest restoration process. It also drastically 

reduces labour costs involved in vegetation surveys. Remote sensing data vary 

in their complexity from two-dimensional RGB images, collected from 

analogue or digital cameras, to three dimensional hyperspectral cubes, 

covering hundreds of bands. Here we summarize current applications of 

available remote sensing methods for various forest restoration tasks and 

discuss the challenges and opportunities of using remote sensing in automated 

tropical forest restoration. 

Key words: remote sensing, GIS, aerial images, hyperspectral data, lidar, 

multispectral data, satellite data, tropical tree species identification. 

INTRODUCTION 
 

Structurally complex and carbon-rich, tropical moist and wet forests (hereafter, 

Humid Tropical Forests, HTF) are some of the most biologically diverse ecosystems 

on Earth. They exhibit high species richness but, at least in the Neotropics, most 

species are quite rare. TER STEEGE et al. (2013) estimate that 1.4 % of species account 

for about half of all individuals. As plants are primary producers and dominate 

landscapes, their roles are always key to habitats. However, tropical forest 
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destruction is on-going. Based on Landsat data, current rates of tropical 

deforestation globally are estimated to be 7.6 million ha per year (ACHARD et al. 

2014). Such estimates vary for several reasons, the most important of which are the 

definition of deforestation (e.g. degree, change or identity of tree canopy cover) and 

the counting method (e.g. satellite data, field-based extrapolations etc.).  

Identifying and locating specific trees, or group of trees, is fundamental to i) 

assessments of forest biodiversity, ii) increasing our understanding of ecosystem 

functioning and iii) reforestation methods that prescribe the use of multiple native 

species to re-establish forest structure (e.g. the framework species method (ELLIOTT 

et al., 2013). Traditionally, identification and mapping of HTF species has been done 

using labour-intensive, ground-based surveys or by interpreting large-scale (> 

1:4000) aerial photographs (ZHANG et al. 2006). Both methods are costly and time- 

consuming. However, with the advent of small unmanned aerial vehicles (UAVs), 

aerial photography has become both more cost-effective and rapid. In addition, 

researchers are now also turning to other remote sensing methods (Table 3.1) to 

assess a host of vegetation parameters, such as spatial structure, complexity, 

dynamics and species distribution.  

 

Aerial digital photography 

 

Maps of species distributions are fundamental to the study of tropical forest 

ecology, allowing us to increase our understanding of population and community 

dynamics, and they form the basis of ecological monitoring and management plans 

(MYERS, 1982; CONDIT et al., 2000; JANSEN et al., 2008; MORGAN et al., 2010). 

High-resolution aerial photography is a relatively inexpensive solution for the 

identification and mapping of species at large scales (Fig. 3.1). It has been applied to 

the identification of tree species in temperate forest with good results (PAINE & KISER, 

2003). In the case of the highly-diverse HTFs, this technique has been used in very 

few cases because of the difficulty associated with recognizing species from crowns, 

often intermixed, and has mostly been limited to mapping a single or few, often 

distinctive, species (Fig. 3.1).  

SAYN-WITTGENSTEN (1978) attempted to identify timber tree species in the tropical 

forests of Surinam and found the approach promising, but highlighted the need for 

criteria to identify species. Later, CLEMENT & GUELLEC (1974) and VOOREN & OFFERMANS 

(1985) working in Gabon and south-eastern Ivory Coast, were able to map one focal 

species in each ecosystem. MYERS (1982) successfully identified 24 tree species with 

75% accuracy in the forests of Queensland (Australia). 
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Table 3.1. Current and planned remote sensing products and platforms with 
specifications. Number of signs increases with increasing costs ($) or data 

processing/storage (*) needed. 
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Trichon and colleagues (GONZÁLEZ-OROZCO et al., 2010; TRICHON, 2001; TRICHON & 

JULIEN, 2006) developed a multi-criteria hierarchical system to describe crown 

typology from aerial photographs; it comprised seven discrete variables: crown size, 

phenology, crown type, crown shape, foliage texture and colour (Fig. 3.2). This crown 

identification key was developed at a study site having precise ground coordinates 

of previously identified (known) species (GARZON-LOPEZ et al., 2013). The crowns, 

visible in the aerial images were carefully matched with their ground locations and, 

in this way, the species were mapped.  

The aforementioned method relies on manual interpretation (delineation) of 

crowns by trained experts, people who are often in short supply and expensive to 

employ. Consequently, automated interpretation has been attempted (just as for 

other forms of remote sensing) using modern methods of digital image analysis, 

based on pixel- or object-based classifications (by a process of segmentation) 

(MORGAN et al., 2010). In fact, the steps involved, such as associating known crowns 

with location, using a combination of criteria (involving sun-lit pixels and e.g., image 

texture and shape recognition) are roughly similar in manual and automated 

interpretation of tree crowns.  

Some of the applications of aerial tree crown interpretation include assessment of 

tree aging (VOOREN & OFFERMANS, 1985) and crown dynamics (HERWITZ et al., 1998); 

monitoring of forest degradation or fires (PANEQUE-GÁLVEZ et al., 2014); locating 

fruiting events and measuring their intensity (JANSEN et al., 2008; VAN ANDEL et al. 

2015); and the development of large-scale species distribution maps, to study plant-

habitat associations (GARZON-LOPEZ et al., 2014), animal behaviour (BROWN et al., 

2014) and animal movement patterns (CAILLAUD et al., 2010; VAN ANDEL et al., 2015).  

The choice of a platform, used to carry the camera, depends on the extent of the 

study area and platform availability, and has a significant effect on determining 

project costs.  Platforms have typically been (in order of increasing cost) ultra-light 

aircraft, small airplanes and helicopters. With the advent of inexpensive off-the-shelf 

and do-it-yourself UAVs, user-friendly, readily mobilized platforms are now 

available, allowing exceptionally cost-effective forest mapping. Flight patterns for 

UAVs, carrying small-format cameras, can be pre-programmed to capture aerial 

photographs (images) with a high degree of overlap for later mosaicking. 

Furthermore, using off-the-shelf automated photogrammetric software packages, 

such images can be used to generate digital elevation models (DEMs). Thus, the 

canopy can be mapped and a digital terrain model (DTM) produced at resolutions, 

set by the user. Additionally, UAV missions may be run and operated by trained local 

people, so that images may be obtained in remote areas without entailing numerous 

lengthy field trips by foresters or other expensive specialists. Depending upon 
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regional expertise, aim of the aerial survey and computer processing power 

available, crown identification can be done i) manually, ii) using a combination of 

experts and trained volunteers (GONZÁLEZ-OROZCO et al., 2010) or iii) by automated 

digital image analysis, developed and run by experts. 

In conclusion, aerial images can be used to support various forest restoration tasks 

(Table 3.2), from rapid pre-intervention site assessments for determining baseline 

levels of degradation, and identification (and location) of trees that can serve as seed 

sources, to monitoring of the progress of restoration following interventions. 
 

Light Detection and Ranging (Lidar) 
 

Lidar technology measures the travel time of a laser pulse from an emitter to a 

target and back to a detector (up to 400,000 pulses of light per second) and derives 

the distance to the target from the return time. When using a lidar unit mounted on 

an aerial platform (AP) to survey vegetation, pulses are reflected from the canopy 

(first return) and the ground (last return). Canopy height is calculated by subtracting 

the first from the last return time, taking into account AP position (altitude, yaw, roll 

and pitch). Using this approach, the instrument collects three-dimensional data in 

large volumes, at high density and with unprecedented precision. 

The instrument consists of a laser emitter, a global positioning system (GPS) 

receiver, providing geographic location, and an inertial measurement unit (IMU), 

which records AP position. Lidar systems are categorized according to the type of 

data they record, as either discrete return or full waveform systems. Discrete return 

systems can be programmed to record (i) only the first return, (ii) the first and last 

return; or (iii) multiple returns; full waveform systems transmit continuous signals 

and the distance is measured based on changes in laser intensity. 

Data resolution is dependent on the number of pulses per unit area and the size of 

the pulse (area of the footprint), which is in turn determine by altitude. For the 

discrete system, the footprint varies between 0.2 and 0.9 meters, while in full 

waveform systems it varies between 8 to 70 meters (LIM et al., 2003). Full waveform 

systems are gaining popularity because they can capture reflections of the emitted 

laser pulse in greater detail than discrete ones.  

Aerial lidar sensors deliver a 3D point cloud of the forest that can then be processed 

to i) a digital surface model (DSM) that includes all the objects on the ground (e.g. 

trees, buildings, etc.), ii) a digital terrain model (DTM) that provides a view of the 

bare ground (without any objects) and iii) a set of very precise canopy metrics like 

the canopy height model (CHM), a canopy density map and the average, maximum 

and minimum canopy height. These forest height metrics can be related to observed 



Remote sensing for forest restoration 

52 

 

above ground biomass (AGB) estimated by field measures and allometric 

relationships in inventory plots. Operational costs often limit the spatial extent of 

lidar-derived AGB estimates, but accurate estimates are vital if forest restoration 

projects are to be funded by REDD+ (Reducing Emissions from Deforestation and 

Forest Degradation) or other carbon-trading systems. In combination with other 

remote sensing approaches, local AGB maps may be scaled up to cover larger areas 

(LAURIN et al., 2014). 

 Up-scaling an aligned lidar sampling of Panama using Landsat satellite data of 

topography, precipitation and vegetation cover, ASNER et al. (2013) modelled carbon 

stocks at a 1 ha spatial resolution to produce a carbon map of Panama.  They found 

that lidar estimated carbon stocks were similar to those estimated from inventory 

plots and concluded that lidar collected measurements can replace laborious field-

derived ones, although validation plots “remain highly valuable for increasing 

accuracy and transparency” (ASNER et al., 2013).   Using a light airplane equipped 

with a small footprint lidar, hyperspectral sensor and a digital camera for aerial 

photographs, LAURIN et al. (2014) estimated AGB of forest in the Gola Rainforest 

National Park in Sierra Leone.  These workers found that integration of the 

hyperspectral data improved the lidar-based model and cautioned that high quality 

field data is essential for lidar-based AGB estimates, particularly if the estimates from 

airborne lidar are to be used to upscale the field-measurements.  

Even though lidar data acquisition and processing can be very expensive (HUMMEL 

et al., 2011), there is an economy-of-scale effect whereby the larger the study area, 

the greater the lidar data acquisition costs are reduced, in the case of Panama to 

about $1.00 USD per hectare (ASNER et al., 2013). While, ground field plots are 

expensive to establish and maintain, costing on the order of (~$2000 to $5000 USD 

per ha) for the same country (ASNER et al., 2013).  

Notwithstanding, on the whole, prices for aerial lidar measurements are 

decreasing as lidar sensors become smaller, lighter and cheaper, as computer 

processing power and data transfer rates increase. Further, lidar efficacy is improved 

when used in combination with other technologies. For example, in automated 

aerial tree mapping, both lidar and hyperspectral data can be collected 

simultaneously (BALDECK et al., 2015). Lidar data are used to derive tree height 

measurements and the 3D structure of the vegetation and are also used for accurate 

orthorectification of the spectral data. Medium-priced systems that combine very 

high-resolution photography with lidar are also available. In Cambodia, SINGH et al., 

(2015) used such a system for tree mapping in HTF, where ground field data 

collection was not possible due to the presence of landmines.  
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Imaging spectroscopy (spectroradiometry) 
 

Spectroscopy is the analysis of light, emitted by or reflected from matter and its 

variation in energy at different wavelengths. In reflected-light spectroscopy, the 

basic property of interest is spectral reflectance: the ratio of reflected energy to 

incident energy, as a function of wavelength. For most materials, reflectance varies 

with wavelength, because energy at different wavelengths is differentially scattered 

or absorbed. These variations in reflectance are evident, when spectral reflectance 

curves for different materials, in our case vegetation, are compared. Pronounced 

downward deflections of the curves indicate wavelengths that a material selectively 

absorbs and are termed “absorption bands”. Overall spectral curve shape, and 

absorption bands’ strength and position of absorption bands can be used to identify, 

and discriminate among, different materials. Minerals, which are comparatively 

structurally simple and stable, can be classified in this manner and a library of 

reflectance spectra exists. Vegetations and their component plants are dynamic and 

interpretation of their reflectance spectra is more complex.  In a general manner, 

spectral reflectance curves of healthy plants have characteristic shapes, related to 

plant attributes. In the visual spectrum (VIS), curve shape is governed by plant 

pigment (e.g. chlorophylls, carotenes, anthocyanin, betalains) absorption. 

Chlorophylls absorb blue and red wavelengths more strongly than green, which is 

largely reflected (hence plants appear green to our eyes). This appears on 

reflectance curves as a characteristic peak within the green wavelength range. 

Reflectance rises sharply to values of about 40 – 50% for most plants across the 

boundary between the red and near-infrared (NIR) wavelengths (680 – 750 nm), and 

is known as the “red edge” effect. This high NIR is related to several factors such as 

chlorophyll concentration, species morphology (organization and construction), 

developmental stage and leaf water content (GHIYAMAT & SHAFRI, 2010). Otherwise, 

in the NIR, most of the remaining energy is transmitted and can interact with other 

lower leaves. Beyond 1.3 μm, reflectance decreases with increasing wavelength, 

except for two conspicuous water absorption bands, near 1.4 and 1.9 μm (SOLDOVIERI 

et al., 2011). Imaging spectroscopy is typically studied between 400 and 2500 nm, 

that is from the VIS 400-700 nm, through the NIR 701 – 1400 nm and Short-Wave 

InfraRed 1 (SWIR 1) 1401 - 1900, to the Short-Wave InfraRed 2 (SWIR2) 1901 – 2500 

nm.  

Although terminology is imprecise, a general distinction is made between 

multispectral and hyperspectral sensors. Multispectral remote sensors (such as the 

Landsat Thematic Mapper and SPOT XS) produce images having few relatively broad 
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wavelength bands, whereas hyperspectral remote sensors collect image data 

simultaneously in dozens or hundreds of narrow, adjacent spectral bands.  

Hyperspectral measurements make it possible to produce a continuous spectrum 

for each image cell or pixel. These data sets are generally composed of about 100 to 

200 spectral bands of relatively narrow bandwidths (5-10 nm), whereas 

multispectral data sets are usually composed of about 5 to 10 bands of relatively 

large bandwidths (70-400 nm). Hyperspectral imagery measurements can be 

represented as a data cube, with spatial information represented by the X-Y plane 

and spectral information represented in the Z-direction (Fig. 3.4). Multispectral 

sensors, principally deployed on satellites, are useful in detecting vegetation types 

but have limited capacity to detect tree species (especially tropical ones), because 

they lack the fine spectral resolution provided by hyperspectral sensors (CASTRO-ESAU 

& KALACSKA, 2008). Recall that resolution has two components, a spatial one and a 

spectral one. In hyperspectral imagery, reflectance spectra are continuous and pixel 

resolution is in the order of 15 cm to 1 m, depending on the sensor and its distance 

from the target. 

The potential uses of hyperspectral imagery (in the lab or airborne, often in 

combination with other remote sensing techniques) for monitoring HTF 

composition, cover and function are numerous and the subject is vast. Hyperspectral 

data (spectral signatures) are essentially a reflection of interactions between light 

and physical and chemical properties, be they cells, tissues, organs (often leaves, 

known as leaf optical properties), individuals (often crowns), populations, 

communities, ecosystems or other higher-level groups. Hence, some of the common 

data uses are for studies of: 
 

1. leaf chemistry, structure and function (e.g., rates of photosynthesis); 

2. life forms (e.g., liana or tree, see KALACSKA et al., 2007); 

3. phenology and 

4. detection and mapping of species. 

 

Moreover, combinations and derivatives of the elemental data are the building 

blocks for detection/analysis of plant traits and growth forms (HOMOLOVÀ et al., 

2013), and vegetation indices (LAURIN et al., 2014).  Currently the use of 

hyperspectral sensors is largely limited by the costs of the sensor as well as 

associated data acquisition and processing, but this is rapidly changing with the 

development of new technologies, such as compact light-weight sensors and open 

source processing software. 
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APPLICATIONS OF REMOTE SENSING TO TROPICAL FOREST RESTORATION 

 

Remote sensing technologies have a wide range of applications in forest 

restoration, from the identification and assessment of sites to be restored, 

identification of tree species, location of “mother” trees as seed sources and the 

necessary frequent monitoring of the restoration process. Multiple technologies can 

be combined to increase the efficacy of restoration, while minimizing limiting factors 

to restoration such as costs, labour and time. They also enable restoration to be 

carried out on remote, inhospitable terrain, where it would otherwise be impractical 

because of the aforementioned limitations.  
 

Figure 3.3. Number of tree individuals, in the tropical forest of Barro Colorado 
Island (Panama), identified using satellite (Quickbird), aerial and hyperspectral 
combined with lidar images, respectively (adapted from Baldeck et al., 2015). 

 

 
 

BALDECK et al. (2015) recently presented an automated method to identify tree 

species in HTF using combined hyperspectral imagery and lidar data. These authors 

compared their results with two previous attempts made at the same study site 

using satellite-based Quickbird images and automated crown delineation methods 

(Handroanthus guayacan and Jacaranda copaia), and manually delineated crowns 

of high-resolution aerial images (J. copaia).  They found that hyperspectral + lidar 

data resulted in better species detection, due to higher resolution of forest structure 

(Fig. 3.3), however, their method is considerably costlier. 
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Remote sensing method of choice will differ depending on goals, budget and the 

landscape. For example, initial assessment of the landscape might require 

information at low resolution over a large area, for which the best approach might 

be free, readily-available, on-line, pre-processed satellite images. However, if the 

aim is to assess forest structure and locate and identify seed trees, then the best 

option might be aerial images (approx. $0.2 USD per hectare), or if it is to 

characterize (and monitor changes in) forest structure (e.g. canopy height, AGB, 

functional diversity) or develop a high-resolution DEM the best results will be 

obtained using hyperspectral +/- lidar sensors (approx. $0.5 USD per hectare).  The 

selection will also depend on the characteristics of the focal species (Fig. 3.2) and 

the selected area (Table 3.2). 

 

DEVELOPING PRACTICAL APPLICATIONS TO AUTOMATE FOREST RESTORATION 

  
We turn our attention now to the priorities for research and development that 

arose out of the brainstorming sessions of the 2015 workshop on Automated Forest 
Restoration (AFR) Chiang Mai, Thailand – how to apply the imaging technologies 
described above to develop robust, cost-effective and automated methods for 
forest restoration.  

Firstly, it must be emphasized that basic knowledge about how to restore local 

forest ecosystems, by conventional means, must already exist, before technology 

can be used to make the tasks of forest restoration easier. Restoration sites should 

be selected on the basis of sound social and ecological criteria, through consultation 

with all stakeholders; a process for which there is no technological substitute. A list 

of indigenous forest tree species known to be most suited to the conditions at the 

restoration site is also an essential minimum pre-requisite.  

The next step is to map the selected restoration site, locate the nearest surviving 

remnant of the reference (or target) forest ecosystem (which will serve as the goal 

of restoration) and locate individual seed trees of the selected, suitable, species 

within it. 

 This can be done in several ways and at multiple scales (it is advisable to use more 

than one). At large scales, freely-available satellite images can be used. At local 

scales, numerous points can be verified by using hand-held GPS receivers, or UAV-

mounted GPS receivers and cameras (as described above). The latter method could 

also generate DEMs and CHMs.  
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Table 3.2. Applications of remote sensing to various stages  
of tropical forest restoration.  

 

 
Another early important step can be to develop databases that combine 

information gleaned from previous experience and to fill knowledge gaps. The 

databases should cover species location, phenology (flowering, fruiting, leafing 

months), reproductive biology, seed dispersal method, seed germination 

requirements and seedling biology. The database should be linked to an image 

library. This library should contain different views of trees (e.g. crowns, trunk) and 

various organs, as well as of seedlings and treelets; priority should be given to 

framework species. UAV-mounted cameras may be used to obtain some of these 

images. The image library would form the basis for a species-identification tool, 

similar in concept to Pl@ntNet (JOLY et al., 2014) (see Chapter 11).  
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After these steps, if higher resolution is required then hyperspectral and lidar 

sensors may be employed. As these sensors are becoming smaller, lighter and less 

expensive, by the time the databases and image libraries near completion, 

complementary new technologies (such as the promising hyperspectral camera 

based on CMOS technology) and user-friendly methods are likely to have become 

widely available.  

Currently, challenges to acquiring aerial images from UAVs, and/or to data 

acquisition from UAVs, airplanes and satellites include: 

 

1. Most hyperspectral and lidar sensors are expensive and heavy (> 4 kg). 

Although changing, this remains an important limitation. Moderately priced 

UAVs have a maximum payload capacity of ca. 2-4 kg and limited flight 

durations (30-60 mins), depending on weight. 

2. High dimensionality of the data makes both lidar and spectroscopic 

(especially hyperspectral) imagery hard to transfer and store. High-

performance computers, having large storage capacities, are necessary. 

Moreover, modelling algorithms are complex and require long computa-

tional times; 

3. Most HTF tree species are very rare, even over large spatial scales. 

4. Airborne and satellite spectroscopic sensors detect over-storey trees. 

Understory trees cannot be detected by these means. 

5. When using lidar, dense canopy cover limits the number of discrete pulse 

returns from the ground, making it difficult to produce well-resolved DTMs. 

6. Weather conditions affect remote sensor outputs. Clouds can block satellite 

images. Flights must be conducted on clear days or below clouds and in little 

to no wind. High humidity can also affect results. 

 

Although numerous challenges remain to be surmounted before many recently 

described methods of remote sensing can be practically applied to the automating 

of tropical forest restoration, the technologies outlined in this article also open up 

many new opportunities. Using inexpensive digital cameras mounted on cheap off-

the-shelf or do-it-yourself UAVs (such as the Flone described in Chapter 7) is an 

excellent starting point for providing basic information, for planning and 

implementing successful restoration projects, as well as providing a means of 

monitoring on-going projects. 
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KEY TO ABBREVIATIONS 
 

AFR = Automated Forest Restoration 

AGB = Above Ground Biomass 

AP = Aerial Platform 

CHM = Canopy Height Model 

DEM = Digital Elevation Model 

DSM = Digital Surface Model 

DTM = Digital Terrain Model 

HTF = Humid Tropical Forest 

Lidar = Light Detection and Ranging 

NIR = Near InfraRed 

NDVI = Normalized Difference Vegetation Index 

SWIR = Short Wave InfraRed 

UAV = Unmanned Aerial Vehicle 

VIS = Visual (spectrum) 
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Figure 3.4. a. The Hyperspectral image cube is built as the sensor passes over the 

ground. b. The hyperspectral curves are generated from the reflectance values 

extracted from a specific point/area/pixel (x, y) at each wavelength. 

 

 
 

 

 


