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หัวข้อวิทยานิพนธ์ การพฒันาดชันีความเส่ือมโทรมของป่าเพื่อการฟ้ืนฟูระบบนิเวศป่าไม ้
 โดยใชภ้าพถ่ายอาร์จีบีจากอากาศยานไร้คนขบั 

ผู้เขียน นายเคียวโฮ ลี 

ปริญญา วิทยาศาสตร์ส่ิงแวดลอ้ม  

คณะกรรมการท่ีปรึกษา รศ.ดร. สตีเฟน เอลเลียต   อาจารยท่ี์ปรึกษาหลกั 
 ผศ.ดร. พิมลรัตน์ เทียนสวสัด์ิ  อาจารยท่ี์ปรึกษาร่วม 

บทคดัย่อ 

การประเมินความเส่ือมโทรมของป่ามีความส าคญัต่อการวางแผนการฟ้ืนฟู การศึกษาน้ีเป็น
การศึกษาแรกท่ีสร้างดชันีความเส่ือมโทรมของป่า  (forest-degradation index: FDI) โดยอาศยัขอ้มูล
จากอากาศยานไร้คนขับ (UAV) โดยมีวตัถุประสงค์เพื่อหาแนวปฏิบัติท่ีจะทดแทนการส ารวจ
ภาคพื้นดินแบบเดิมท่ีใช้ก าลังคนมากในการเก็บข้อมูลท่ีซับซ้อน การศึกษาประกอบด้วยการหา
ความสัมพนัธ์ระหว่างขอ้มูลท่ีไดจ้าก UAV และขอ้มูลภาคพื้นดิน และการสร้าง FDI วิธีศึกษาเร่ิมจาก
การถ่ายภาพพื้นท่ีโดยใช ้UAV คู่ไปกบัการเก็บขอ้มูลภาคพื้นดินในแปลงฟ้ืนฟูป่า 5 แปลง ซ่ึงมีระดบั
ความเส่ือมโทรมแตกต่างกนั ภาพถ่ายถูกประมวลผลเพื่อสร้างโมเดลความสูงของเรือนยอดและสร้าง
ภาพถ่ายออร์โธท่ีใชใ้นการวดัตวัแปร 6 ตวัของการวดัระดบัความเส่ือมโทรม การศึกษาพบว่าตวัแปร 
4 ตัวท่ีแสดงความสัมพันธ์อย่างมีนัยส าคัญระหว่างข้อมูลจาก  UAV และภาคพื้นดิน คือ ความ
หนาแน่นของตน้ไม ้(r = 0.84) ร้อยละการปกคลุมของเรือนยอด (r = 0.91) ร้อยละการปกคลุมของพืช
พื้นล่าง (r = 0.84) และร้อยละของพื้นดินท่ีเปิดโล่ง (r = 0.75) ในการสร้าง FDI ค่าร้อยละการปกคลุม
ของเรือนยอดมีความสัมพนัธ์อย่างมากกบัตวัแปรอ่ืนจึงถูกตดัออกเพื่อป้องกนัการถ่วงน ้ าหนกัท่ีมาก
เกินไป ตัวแปร 3 ตัวท่ีเหลือถูกถ่วงน ้ าหนักโดยผูเ้ช่ียวชาญและปรับค่าตัวแปรให้เป็นปกติ (นอร์
มลัไลเซชัน) ค่า FDI ท่ีค  านวณได้สามารถประเมินความเส่ือมโทรมและจดัอนัดับพื้นท่ีตามสภาพ
ความเส่ือมโทรมได ้แต่ FDI มีขอ้จ ากดั คือ 1) ไม่สามารถแสดงถึงจุดเปล่ียนระหวา่งระดบัความเส่ือม
โทรมไดช้ดัเจนเหมือนเกณฑจ์ากขอ้มูลภาคพื้นดิน 2) FDI เป็นค่าต่อเน่ือง การแบ่งค่าระดบัไม่จ าเพาะ
เจาะจง และ 3) FDI ขาดองคป์ระกอบดา้นภูมิทศัน์ของพื้นท่ี ดว้ยขอ้จ ากดัดงักล่าว การใช ้FDI ร่วมกบั
การพิจารณาขอ้มูลภาคพื้นดินอาจเป็นทางออกท่ีดีท่ีสุดส าหรับการวางแผนการฟ้ืนฟูป่า  
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ABSTRACT 

Forest degradation assessment is essential to plan restoration. This study was a first 

attempt to develop a forest-degradation index (FDI), based on data from unmanned aerial 

vehicles (UAVs). It aimed to find a practical solution to replace labor-intensive 

conventional ground surveys with complex multiple variables, to plan restoration 

projects. It explored correlations between UAV and ground data, to construct a FDI. Five 

forest-restoration trial plots, representing a wide range of degradation level, were 

surveyed, with ground sample plots and a UAV. Aerial photos were processed, to produce 

canopy-height models (CHMs) and orthophotos, used to measure six variables, related to 

degradation. Four were highly correlated between ground and UAV-derived 

measurements: tree stocking-density (TD, r = 0.84), per cent canopy cover (CC, r = 0.91), 

per cent ground vegetation (VEG, r = 0.84), and per cent exposed soil + rock (SOIL, r = 

0.75). To construct the FDI, a highly intercorrelated variable (CC) was rejected, to prevent 

over-weighting of related factors. The three remaining criteria were weighted by experts 

and applied to the normalized values. The resultant FDI quantified degradation levels 

reasonably intuitively and ranked the sites in logical order of degradation. However, 

limitations of the technique included i) obscurement of tipping points, which define 

conventional degradation stages ii) use of 5 arbitrary categories in the FDI, and iii) 

exclusion of landscape criteria. Until these issues are resolved, a hybrid system, 

combining individual variables, with the UAV-derived FDI system, may be the best 

solution for planning restoration strategies.  
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GLOSSARY 
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AHP Analytic Hierarchy Process: Descriptive approach to decision-

making. A theory of prioritization that derives relative scales 

of absolute numbers known as priorities from judgments 

expressed numerically on an absolute fundamental scale. 

ANR Assisted Natural Regeneration: A forest ecosystem restoration 

strategy, enhancing the natural processes of forest 

regeneration, rather than planting new trees, by ⅰ) removing 

barriers to natural forest, ⅱ) helping the growth of established 

natural, and ⅲ) encouraging seed dispersal. 
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DEM Digital Elevation Model: A grid of pixels identified with their 

3D coordinates (x, y, and z), presenting topographical features 

on the ground, generated from elevation data. DSM, DTM, and 

CHM are type of DEM. 

DSM Digital Surface Models: A type of DEM, presenting ground 

features. 

DTM Digital Terrain Models: A type of DEM, presenting upper 

surface of objects on the ground. 

Framework tree  

species method 
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the tree planting options. It exploits natural seed dispersal 
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and attract seed-dispersing animals. 

HSB Hue, Saturation, and Brightness: A color model, identifying 

colors with three elements—Hue: a particular wavelength in 

visible ray; Saturation: percentage of purity of color (0% is pale 

and 100% is pure and strong); Brightness: percentage of 

whiteness (0% is black and 100% is white). 

Hyperspectral 

imagery 

Remotely sensed image consists of various bands, not only 

multispectral level, but higher level of spectral details, i.e., 

hundreds or thousands of bands, generally unnamed, with 

narrower bands (10-20 nm) 

LP Lam Pang: One of five study sites, where was expected as the 

1st most degraded site according to the ground survey. 
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Maximum diversity 

planting 

A forest ecosystem restoration strategy, recreating the tree 

species composition near to the original diversity by intensive 

planting. It is recommended when seed-dispersal is limited 

from remnant forest (e.g., by far distance with seed trees, and 

lack of seed-dispersing animals). 

MCDA Multi-Criteria Decision Analysis: general term for explicit and 

formal techniques to aid decision making using multiple 

criteria. 

ML Mon Long: One of five study sites, where was expected as the 

2nd least degraded site according to the ground survey. 

Multispectral 

imagery 

Remotely sensed image consists of various bands, not only 

visible rays (i.e., RGB: Red, Green, and Blue bands), but 

generally 3-10 bands (e.g., near infrared, thermal infrared, 

etc.), which can be described with titles. 

Nurse tree plantation A forest ecosystem restoration strategy, plating highly resilient 

tree species to improve the soil and modify the micro-climate. 

Orthophoto A referenced image compiled by aggregating multiple-

overlapping images, so that radial distortion of each raw image 

is removed, and the overall area can be projected as a 

completely vertical image map. Also called, ortho-mosaic 

photo, ortho-mosaic map 

PCM Pairwise Comparison Matrix: A matrix consists of judges, 

comparing entities in pairs, to evaluate which of each entity is 

preferred. 

Point cloud A set of data points, each associated with its spatial 

coordinates, representing a 3D shape or object. 
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RGB Red, Green, and Blue lights are added together in various 

proportions to reproduce a broad array of colors. Conversely 

each color can be decomposed in and coded using these three 

components. 
 

RS Remote Sensing: Collecting information without physical 

contact to the object. It can be grouped into three platforms on 

the basis of spatial scale, ⅰ) spaceborne, ⅱ) airborne, and ⅲ) 

ground-based platforms. 

SfM Structure from Motion: A digital aerial photogrammetry 

(DAP) technique, based on parallax—the fact that from a 

moving platform, close objects appear to move past faster than 

distant objects—thus distance of points from the camera can be 

calculated from overlapping photographs. 
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CHAPTER 1 

Introduction 

1.1 Background 

All over the world, forest restoration is being promoted as a major contribution 

towards the mitigation of global climate change and to address socio-economic issues, 

such as food security, poverty alleviation and economic growth. This trend is supported 

by several international organizations, such as the Convention on Biodiversity (CBD), 

Aichi Target 15 and the UN Framework Convention on Climate Change (UNFCCC), 

through their initiative: Reducing Emission from Deforestation and Forest Degradation 

(REDD+) program. Such global programs are major drivers of forest restoration (SCBD, 

2002; 2010; UNFCCC, 2008). The Bonn Challenge was launched by the German 

government and the International Union for Conservation of Nature (IUCN) in 2011. It 

targeted restoration of 150 million hectares of deforested and degraded lands by 2020. 

Subsequently, the New York declaration on Forest (NYDF), proposed at the UN Climate 

Summit in 2014, added a further 200 million hectares to the target and extended the time 

frame to 2030 (UN Climate Summit, 2014; Dave et al., 2019). In March 2019, the UN 

Decade on Ecosystem Restoration was declared by UN General Assembly (UNGA). The 

UN’s Environment Programme (UNEP) and the Food and Agricultural Organization of 

the United Nations (FAO) are co-ordinating the initiative, which includes global 

restoration activities towards the Bonn Challenge (UNEP & FAO, 2019; 2020). This 

means that ecosystem restoration, including forest ecosystems, has achieved global 

recognition, as an urgent goal for the coming decades. 

Accordingly, various organizations are implementing initiatives to contribute 

towards these ambitious goals, at both regional and national levels. The African Forest 

Landscape Restoration Initiative (AFR100) aims to restore 100 million hectare of 

degraded and deforested land in sub-Saharan Africa by 2030 (AFR100 Governance, 

2017), whilst Initiative 20×20 seeks to restore 20 million hectares of degraded land by 

https://initiative20x20.org/
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2020 in Latin America and the Caribbean (IUCN, 2017). Also, Asia-Pacific Economic 

Cooperation (APEC) launched APEC 2020 Forest Cover Goal from the Sydney APEC 

Leader’s Declaration on Climate Change, Energy Security and Clean Development in 

2007, aiming to increase forest cover to 20 million hectares by 2020 in the Asia-Pacific 

region (APEC Economic Leaders, 2007; FAO, 2019) and, the Asia-Pacific Regional 

Strategy and Action Plan for Forest Landscape Restoration to 2030 has been developed 

by FAO and Asia-Pacific Network for Sustainable Forest Management and Rehabilitation 

(APFNet). It suggests strategic priorities and action plans, to support attaining 

international and national goals, related to boosting forest restoration and strengthening 

ecological functionality (FAO & APFNet, 2018). 

1.2 Problem statement and rationale 

Participants in such initiatives should focus on the ecological impacts of the 

restoration as much as the quantity. According to the five-year assessment report of 

NYDF in 2019, most restoration projects are outside of natural forestland. Increased tree 

cover has been detected on non-forest areas (e.g., croplands and shrublands), three times 

more than inside natural forest (NYDF Assessment Partners, 2019). Furthermore, only 

one third of the restoration areas, pledged under the Bonn Challenge, is in natural forest; 

the rest is plantations and agroforests (Lewis et al., 2019), whist natural forest cover 

decreases more rapidly, from 18.3 Mha, to 26.1 Mha in annual average before and after 

NYDF launched (NYDF Assessment Partners, 2019). This is problematic because forest 

destruction brings about losses of biomass, biodiversity and ecosystem functioning, 

particularly carbon sequestration (NYDF Assessment Partners, 2019). The carbon 

sequestration capacity of forest ecosystem restoration is 6 times and 40 times higher than 

that of agroforestry and plantations respectively (Lewis et al., 2019). Forest ecosystem 

restoration is not simply revegetation. It includes re-instating biodiversity-ecosystem 

functioning (BEF). Multiple (various) and stable (sustainable) forest functioning requires 

multiple species, genetic diversity and above- & below-ground linkage of plants, which 

are highly developed in natural forest. Forest ecosystem restoration means returning 

levels of biomass (and carbon) accumulation, structural complexity, biodiversity, and 

ecological functioning to those of the reference forest type (Elliott et al., 2013). It is not 

a single intervention, but rather a process of adaptive management in response to a series 
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of interdependent interventions, aimed at reversing the process of forest degradation. 

(Aerts et al., 2011; Stanturf et al., 2014). 

Consequently, it is important that forest restoration is prioritized in degraded forests 

or recently deforested lands. Furthermore, identifying and assessing different levels of 

forest degradation are necessary, to devise effective restoration strategies for each level 

(Sasaki et al., 2011). Numerous reforestation projects have failed, due to inadequate 

planning and execution. For example, a 13-year restoration program in Hainin, China, 

failed because of inadequate identification and assessment of forest condition. This 

allowed expansion of deforestation and plantations even into remaining natural forest 

remnants (Zhai et al., 2014). Failure was also due to inappropriate species choices and 

low genetic diversity of planting stock, leading to poor reproduction (i.e. low seed 

germination and seedling survival rate) (Thomas et al., 2015). Although some forest 

restoration projects fail due to fire and drought, most failures occur because of technical 

factors, such as lack of weed control, poor species selection and seed sourcing, low 

planting stock and inadequate nutrients (FAO Regional Office for Asia and the Pacific, 

2005). To prevent further technical failures, informed restoration plans, based on clear 

recognition of prevailing environmental constraints are needed. The process of planning 

begins with identifying degradation levels, as a basis for deriving restoration strategies.  

However, the current ways of measuring forest degradation are labor-intensive, and 

teams of field workers can generally cover very small sample plots. For example, in 

northern Thailand, Chiang Mai University’s Forest Restoration Research Unit (FORRU-

CMU) conducts rapid site assessment for planning restoration projects. Generally, it takes 

a whole day for each project (approximately 0.5 – 3.0 hectare), with 3 - 4 teams, each of 

2 - 4 members. Remote sensing has advantages in terms of convenient data collection 

from remote, requiring less labor, and availability of advanced data analysis and overall 

survey, whilst conventional ground surveys are limited by sampling. It can also be applied 

for measuring and analyzing forest structure. Especially, Unmanned Aerial Vehicles 

(UAVs) are able to closely approach trees and detect detailed structure. 

Furthermore, forest degradation has been presented conventionally in terms of 

discrete ‘stages’. For example, FORRU-CMU published a 5-stages view of degradation 

based on six critical thresholds (criteria), with tipping points indicating the transition from 
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one degradation to the next. However, each of the tipping points were mostly based on 

only one each of the six criteria. This makes it difficult to integrate multiple criteria to 

classify forest degradation stages. It limits understanding of degradation processes subject 

to various interconnected criteria and may result in bias in determining restorative 

interventions. Also, discrete categorizing systems are limited for comparing degradation 

levels among sites and for monitoring the effectiveness of strategies. On the other hand, 

a continuous index system can distinguish detailed differences, among sites even within 

the same conventional degradation stage. As indices are generated by combining multiple 

criteria, bias due to dependency on single criteria can be prevented. 

Resolving these issues fulfills one of the recommendations of the UN Decade on 

Ecosystem Restoration 2021–2030, i.e., to overcome the barrier of the limited technical 

knowledge and capacity, which currently limits the success of restoration projects and 

initiatives, at both national and local levels. The UN Decade specifically emphasizes 

provision of and sharing methods and tools, including baseline studies, site-specific 

restoration protocols, and monitoring (UNEP & FAO, 2019). Ultimately, this research, 

presented here, supports successful restoration projects, to achieve climate change 

mitigation in line with global initiatives. 

1.3 Objectives 

Consequently, this research project explored the use of RGB images, from a 

consumer UAV, to define stages of forest degradation/regeneration for the development 

of forest restoration (or conservation) strategies. The aim of this study was to develop an 

advanced UAV-based forest-survey methodology, which is more effective, in terms of 

time and labor consumption, and with more accurate results, compared with other current 

techniques. It is intended that the methods, developed by this project, will be applicable 

for assessing forest-degradation levels and for developing effective restoration plans. 

The detailed objectives were: 

1. To identify correlations between variables of forest degradation, currently 

measured on the ground, with equivalent indicators derivable from UAV-based imagery.  

2. To develop an advanced forest degradation assessment system, leading to 

degradation index, using RGB data collected by consumer UAVs. 
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1.4 Conceptual framework 

 

Figure 1.1 Conceptual framework of this study
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CHAPTER 2 

Literature Review 

2.1 Forest-degradation assessment as the basis for restoration planning 

Forest degradation is defined differently by different organizations, but there are 

two main perspectives of definition: one based on ecological criteria (biophysical 

definitions); the other based on the impact of degradation on human livelihoods 

(anthropocentric definitions). For example, the Convention on Biodiversity (CBD) 

focuses on the availability of habitat for forest-dependent species and considers forest 

degradation as one of the leading causes of biodiversity loss. The organization describes 

forest degradation as any combination of loss of soil fertility, compaction and salinization 

and reduced forest cover and ecological functioning that impedes or retards unassisted 

forest recovery, through secondary succession (SCBD, 2002). Also, IPCC (2003) focuses 

on the loss of forest values (particularly carbon), likely to be characterized by a reduction 

of tree cover. Focusing more on the socio-economic impacts of forest degradation, the 

FAO and ITTO define it in terms reduced capacity of forests to provide goods and 

services (to humans) (FAO, 2002; ITTO, 2002). Temporal change, spatial scale and 

causes of degradation (human or nature) have also been proposed as components of the 

definition of forest degradation by various researchers (FAO, 2011). In reality, 

anthropocentric definitions are a consequence of degradation of biophysical factors, 

since, if forest degradation reduces biomass and biodiversity etc. ecological services that 

support agriculture are reduced, along with the productivity and variety of forest and 

products to meet varied human needs. Consequently, in this study, forest degradation was 

assessed on based on biophysical factors such as relative cover of tree-crowns, vegetation, 

and bare ground, and number and height of remaining trees. Conversely, the effectiveness 

of restoration was evaluated in terms of reversing these variables.  
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A wide variety of forest-degradation indicators have been put forward. For 

example, Thompson et al. (2013) proposed a scoring system, based on comparing the per 

cent value of current 5 criteria and 7 indicators relative to target levels. However, they 

did not provide threshold levels for each indicator. Vásquez-Grandón et al. (2018) 

proposed 3 key elements, to evaluate forest degradation: ⅰ) a reference forest, ⅱ) 

degradation indicators and ⅲ) threshold values of those indicators. The FAO reported that 

different countries define or assess forest degradation, in terms of reduced productivity, 

biomass, and biodiversity (FAO, 2011; Simula, 2009). Such reports imply the necessity 

of effective and systematic programs to assess degree of degradation. Specifically, 

Vásquez-Grandón et al. (2018) concluded their review by identifying a fundamental and 

urgent need for implementing suitable practices, against ongoing degradation of forests, 

where they have not been totally degraded beyond thresholds, rather than simply finding 

degraded forests in landscape. 

Bahamóndez et al. (2009) modeled a stocking chart, whose concept was adopted 

from Ginrich (1967), and tested the availability of applying the stocking chart for 

assessing forest degradation with respect to sustainable productivity, but also expected it 

to be used for monitoring carbon stock. Subsequently the stocking chart was applied for 

quantitatively assessing and predicting forest degradation, resilience, and stability of 

stands, according to the intensity of harvesting (Figure 2.1) (Bahamondez & Thompson, 

2016),. These approaches suggested tools for quantitatively assessing forest degradation 

and deciding on practical solutions. However, these studies focused on sustained yield, 

considering only productivity, rather than forest ecosystem restoration. 

Sasaki et al. (2011) stated that restoration interventions should match different 

degrees of degradation. They proposed strategies, which were based on different 

degradation levels from a minimum (e.g., reducing harvest and avoiding logging 

vulnerable area) to a maximum (e.g., assisted natural regeneration and replanting). 

However, this concept only considered harvesting and logging, as the main drivers of 

degradation. Other disturbances were not considered (e.g., agricultural activities, grazing, 

forest fire, etc.). Also, only observed inventories were described as carbon stock. Practical 

boundaries or standards, categorizing each level of degradation, were not mentioned 
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Figure 2.1 A stocking chart determining per cent of stock from number of trees and basal 

area. It shows gradual changes of stock and discrete categories, marked in different colors, 

separated by line A, B, and C. (adopted from Bahamondez & Thompson, 2016) 

Chiang Mai University’s Forest Restoration Research Unit (FORRU-CMU) 

proposed 5 stages of forest ecosystem degradation, on the basis of 6 critical thresholds, 

which, once crossed, necessitate a substantial change in restoration methodology. A 

rapid-site-assessment protocol (RSAP) was developed, to identify degradation stages and 

provide essential inputs into developing effective restoration strategies for each stage. 

Five levels of degradation were distinguished by tipping points based on the critical 

thresholds, resulting in 5 different restoration responses (see Table 2.1) (Elliott et al., 

2013).  

Modica et al. (2015) proposed a gradual index system, to describe forest-

degradation. Individual indicators were applied, to represent not only the biophysical 

characteristics, but also biodiversity and ecological functionality. Combining these 

criteria into a forest-degradation index (FDI) was done using Multi-Criteria Decision 

Analysis (MCDA), weighting each variable using an Analytic Hierarchy Process (AHP), 

to process expert opinions. Modica et al., (2015) stated that the AHP approach provides 

simplicity, flexibility, and transparency to aid decision-making and conflict-resolution. 



 

9 

Table 2.1 Six thresholds to classify and describe forest-degradation stages and restoration strategies (adopted from Elliott et al., 2013). 

Degradation stage 

Suggested restoration strategies 

Landscape-critical Threshold Site-critical Threshold 

Forest in 
landscape 

Seed-dispersal 
mechanisms 

Fire risk Vegetation cover 
Natural 

regenerants 
Soil 

Stage 1 
 

Protection 

Remnant forest 
remains within 
a few km of the 
site 

Mostly intact, 
limiting the 
recovery of 
tree species 
richness 

Low  
to medium 

Tree-canopy cover 
exceeds herbaceous 
weed cover 

Natural 
regenerants 
exceeds 3,100/ha 
with more than 
30 common tree 
species 
represented  

Soil does not 
limit tree 
seedling 
establishment 

Stage 2 
 

Protection + ANR 

Medium  
to high 

Tree-canopy cover 
insufficient to shade 
out herbaceous 
weeds 

Stage 3 
 

Protection + ANR + 

Planting Framework tree sp. 
High 

Herbaceous weed 
cover greatly 
exceeds  
tree-crown 

Natural 
regenerants 
sparser than 
3,100 trees/ha 
with fewer than 
30 common tree 
species 
represented 

Stage 4 

Protection + ANR + maximum 
diversity planting Remnant forest 

patches very 
sparse or 
absent from the 
surrounding 
landscape 

Seed-
dispersing 
animals rare 
or absent such 
that the 
recruitment of 
tree species to 
the restoration 
site will be 
limited 

Soil degradation 
limits seedling 
establishment 

Stage 5 
Soil amelioration + 

Nurse tree plantation, 

followed by thinning and gradual 
replacement of maximum 

diversity tree planting 

Initially low 
(soil conditions 
limit plant growth) 
higher as the 
vegetation 
recovers 

Herbaceous weed 
cover limited by poor 
soil conditions 
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2.2 Remote sensing as the platform for effective forest survey 

Due to the limitations of direct ground surveys for forest inventory and degradation 

assessments, various trials have explored using data derived from remote sensing (RS)—

collecting information without physical contact to the object. RS technologies can be 

grouped into three platforms on the basis of spatial scale, ⅰ) spaceborne, e.g., satellites, ⅱ) 

airborne, e.g., airplanes, helicopters, and unmanned aerial vehicles (UAVs), and ⅲ) 

ground-based, e.g., terrestrial laser scanners (TLS), and hand-held, mobile, laser scanners 

(HMSL). Sensors mounted on such platforms can be ⅰ) passive, sensing naturally 

generated or reflected radiation from objects (e.g., visible, heat radiation, multispectral, 

and hyperspectral types), or ⅱ) active, emitting radiation and sensing its reflection back 

from objects, e.g., Radio Detection And Ranging (RADAR), and Light Detection and 

Ranging (LiDAR) (Camarretta et al., 2019). 

Interest in spaceborne systems has grown since 1999, because of its usefulness to 

determine changes over time, since data are collected regularly and relatively frequently 

and the various sensors cover very large areas (Alonzo et al., 2018; Camarretta et al., 

2020). Surveys of various forest attributes, using different satellite data and ancillary data 

have been published as follows. 

Zhuravleva et al. (2013) assessed forest degradation in the Democratic Republic of 

the Congo from 2000 to 2010. Data from Landsat satellite imagery were used to generate 

maps of forest cover, extent, and loss. Data from GLAS (Geoscience Laser Altimeter 

System) sensors were used, to determine tree-canopy heights and for calibration. They 

recorded 1.02 % of primary forest was cleared over 10 years and 2 % degraded, due to 

land-use change and fragmentation. Hansen et al., (2016) also detected tree-height 

information in Sub-Saharan Africa, between 2013 and 2014, from Landsat and GLAS 

data, to describe tree-height distribution and canopy discontinuity. Heights of tall trees (> 

20 m height) were significantly underestimated by about 4 and half meter on average, 

whilst those of small trees (< 5 m height) were overestimated by about 1 and half meter 

on average. 
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Rapinel et al., (2014) classified vegetation cover into three types, ⅰ) non-vegetation 

area, ⅱ) artificial vegetation (i.e., crops, garden and parks, and plantation), ⅲ) natural and 

semi-natural vegetation (i.e., forests and thickets) from Worldview-2 satellite images 

applied with thematic ancillary data. This classification was reasonably accurate with 

Kappa index of 0.74. (Kappa index quantifies the accuracy of categorical maps. With 

value of one indicating 100 % accuracy). Shimabukuro et al. (2014) and Da Ponte et al., 

(2017) assessed temporal changes in forest cover. Shimabukuro et al. (2014) used fraction 

images, extracted from Landsat. Soil fraction images were derived from high-reflectance 

areas, distinguishing clear-cut deforestation sites and bare soil, whilst shade fraction 

images were from low reflectance areas, quantifying areas of water, shadow and burnt 

forest. With these two fraction images, they were able to distinguish between degraded 

forests by selective logging and forest fire from June to October in 2002. Da Ponte et al., 

(2017) also used Landsat data to identify five classes of forest cover (i.e., forest, 

croplands, grasslands, urban areas, and water) and detect the change for 17 years, from 

1999 to 2016. They reported a 7,500 km2 loss in forest cover, which was 27 % of the 

original area in 1999. They also included landowners’ perceptions as socio-economic data 

to identify those factors affecting forest dynamics: farm type, level of dependency and 

use of forest products and ecological services, and the level of education of forest owners. 

The use of satellite data for assessing forest attributes has expanded the research 

spectrum, enabling exploration of wider temporal and spatial scales, especially 

identification of land cover and detection of accelerated land use changes with greater 

accuracy at the landscape level (Miranda et al., 2020). 

However, challenges and limitations when using satellite data remain. Calibration 

and validation of site information from satellite images is not extensive enough (Alonzo 

et al., 2018), and the frequency of temporal scale is not always that required by project 

goals (Rapinel et al., 2014). Moreover, satellite images have limited resolution, which is 

not high enough to be useful at the site level (Da Ponte et al., 2017; Alonzo et al., 2018). 

In particular, use of satellite data to quantify forest-degradation severity, from qualitative 

changes in forest attributes and composition, is complicated and limited (Miranda et al., 

2020). 
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2.3 UAVs as optimal remote-sensing platforms for small-scale restoration planning 

Unlike satellites, airborne platforms can fly close to vegetation canopies, such that 

data resolution is exceptionally high and geographical information is precise (although 

much smaller areas can be covered, compared with satellite data). In particular, unmanned 

aerial vehicles (UAVs) can fly very close to forest canopies more cheaply and safely 

compared to the conventional airborne platforms (e.g., airplanes and helicopters), leading 

to higher spatial and temporal resolutions (Alonzo et al., 2018; Camarretta et al., 2019).  

So, UAV-derived data can be more effectively used to complement or replace 

satellite data, when surveying forest attributes and determining strategies particularly for 

small-scale restoration projects, which are mostly organized by local practitioners and 

Corporate Social Responsibility (CSR) donors. Getzin et al., (2012) used high-resolution 

airborne photographs from a UAV to detect canopy gaps to assess plant diversity in the 

forest understory. They reported that disturbance patterns of canopy gaps were highly 

correlated (R2 = 0.74) with plant diversity under the canopy layer.  

Active sensors are also mounted on airborne platforms for forest survey purposes. 

Mutwiri et al. (2017) used a light detection and ranging (LiDAR) sensor on an aircraft to 

estimate tree height and biomass in different forests types (e.g., natural, plantation, and 

other scattered forests) to correlate the results with ground-survey data. For tree height, 

correlation coefficients averaged 0.92 (from 0.79 in natural forest to 0.95 in plantations) 

and for above-ground-biomass (AGB), the average correlation coefficient was 0.86 (from 

0.51 in scattered forests to 0.84 for plantations). De Almeida et al., (2020) also detected 

canopy structural attributes (i.e., canopy height, rugosity, gap fraction, canopy Shannon 

index, leaf area index (LAI), and understory LAI) from LiDAR on a UAV and analyzed 

their relationships with AGB and species diversity, to monitor tropical forest succession. 

Canopy gap fraction, rugosity, and understory LAI were correlated with forest age, and 

canopy height was correlated with AGB. 

Various data from different sensors and platforms have been integrated to maximize 

the effectiveness of remote sensing. Caughlin et al., (2016) used fraction of 

photosynthetic vegetation (PV) from Landsat satellite data and detected a correlation with 

tree height (R2 = 0.51) and canopy cover (R2 = 0.56) from LiDAR data. Sankey et al. 
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(2017) merged high-resolution LiDAR data with hyperspectral and multispectral data 

from a UAV. Multispectral data were used to classify the vegetation and detect bare soil 

(76 % of accuracy), by generating 3D point clouds, but the technique was not successfully 

applied to measure tree height (R2 = 0.64) and tree density (R2 = 0.53) in dense forest. 

Therefore, they used LiDAR data to successfully estimate tree height (R2 = 0.90), crown 

diameter (R2 = 0.72), tree-canopy cover (R2 = 0.87) and tree density (R2 = 0.77). 

Furthermore, combined LiDAR-hyperspectral imagery was more accurate (88 %) for 

classifying vegetation species, compared with hyperspectral data alone.  

However, LiDAR and hyperspectral cameras are expensive, whereas RGB cameras, 

which come as standard on consumer UAVs, are more cost-effective. To generate three-

dimensional point clouds model using RGB imagery, structure-from-motion (SfM) 

techniques have been applied and is incorporated into many drone imaging software 

packages (e.g., Ecosynth, Agisoft Metashape, Pix4D, DroneDeploy, and OpenDroneMap 

(ODM), etc.) This technique is based on parallax—the fact that from a moving platform, 

close objects appear to move past faster than distant objects—thus the magnitude of shifts 

in position of the same point between 2 or more photographs can be used to calculate the 

distance of that point from the UAV (Ullman, 1979; Stockman & Shapiro, 2001). 

 Zahawi et al. (2015) used the SfM technique on images taken with a consumer-

grade camera on a small multicopter drone, analyzed by the open-source ‘Ecosynth’ 

software, to measure canopy structure of 7–9 years tropical forest restoration plots, 

compared with ground-based measurements. Correlations between field-based 

measurements and the Ecosynth 3D model were high for canopy height (R2 ≥ 0.85), AGB 

(R2 ≥ 0.81) and canopy openness (R2 = 0.82). Only canopy roughness (R2 = 0.53) was not 

highly correlated. Since Zahawi et al.’s landmark paper, the SfM technique has been 

widely applied to assess forest attributes. Fujimoto et al., (2019) generated canopy height 

models (CHMs) from SfM point clouds. Then, they detected tree-top points (92.3 % 

accuracy) and tree-crown boundaries to distinguish two tree species (83.6 % accuracy). 

These variables were used to estimate DBH, and carbon stock. Khokthong et al., (2019) 

compared estimated canopy cover derived from SfM point cloud with hemispherical 

photography captured on the ground, in mixed-species planted oil palm agroforest, and 

found strong correlation (R2 = 0.84) between them. Furthermore, they separated crown 
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cover into oil palm and mixed-species interplanted trees and found higher level of oil 

palm cover increases the mortality of interplanted trees. Swinfield et al., (2019) proved 

that SfM is just as effective as LiDAR for generating 3D point clouds to investigate forest 

structure by comparing canopy height and AGB detected from both of the techniques. 

As LiDAR has been integrated with other types of data sources for better synergized 

accuracy, point clouds from SfM were also applied with other types of RS data. Alonzo 

et al. (2018) and Riihimäki et al. (2019) collected data at the plot scale, using a UAV and 

bridged the gap between the coarse scale of satellite data and field measurement. Baena 

et al., (2017) flew a UAV to collect RGB and near-infrared imagery to generate SfM 3D 

point clouds and object-based image analysis. 95.32 % of overall accuracy was analyzed 

for identifying three tree species using the integrated method.  
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CHAPTER 3 

Methodology 

3.1 Study sites 

This study was performed on sites at various stages of progress after restorative 

interventions in Chiang Mai and Lampang Provinces, northern Thailand (Figure 3.1).  

 

Figure 3.1 Location of five study sites, located in Chiangmai, and Lampang provinces, 

northern Thailand. 

Five sites, covering a wide range of restoration progress were selected. All were 

FORRU-CMU experimental plots of known history, undergoing restoration, ranging in 

age since tree planting from 0 to 8 years. Prior disturbances before restoration ranged 

from severe: quarry site after mining, to abandoned agricultural sites and fire-damaged 

sites (Table 3.1). Therefore, these five sites represented a range of degradation levels. 

This was because all sites were undergoing restoration. i.e., reversing forest degradation. 

Details of each plot are provided in Table 3.1, whilst views of each plot are provided in 

Figure 3.2.  
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Table 3.1 Five study sites in a range of restoration progress 

Meteorological data of each site for five years (2010–2015) were from three stations 

in northern Thailand. BMSM, ML, and BPK, were higher, wetter sites. The nearest 

meteorological station was Station No.3, Doi Ang Kang station (1,530 m a.s.l.): recorded 

mean annual precipitation of 1,897.6 mm, and temperature range 3.9–32.1 °C. Climatic 

data for the BMM site came from Station No.4, Chiang Mai station (313 m a.s.l.): with 

less rainfall (mean 1,119.2 mm) and higher temperatures (11.0–41.0 °C). Climatic data 

for the LP site, also lowland, came from Station No.13, Lampang A station (319 m a.s.l.): 

mean rainfall, 1,196 mm, and temperature ranged from 8.2 °C to 43.0 °C.   

No. Site 
Restored 

year 
Land cover Before restoration Longitude Latitude 

Altitude 
(m a.s.l.) 

Area, 
Sampling 

Circles 

1 
Ban Mae 
Sa Mai 

(BMSM) 
2012 

- restored in 2007 (5 years before) 
- burnt in 2010 (2 years before) 
- remained as an abandoned site, 
  with dense and strong weed 

98° 50' 57" 18° 51' 22" 1,247 m 

1.07 ha 
(6.69 rai) 

10 plots 

2 
Mon 
Long 
(ML) 

2014 

- severely impacted evergreen 
  forest by forest fire 
- enrichment planting amongst 
  scattered remnant mature trees 
- with dense and strong weed 

98° 50' 28" 18° 55' 20" 1,290 m 

1.03 ha 
(6.44 rai) 

10 plots 

3 
Ban Pong 

Krai 
(BPK) 

2016 

- agriculture 
- natural regeneration continued 
- planting trees few years ago, 
  but not successful. 

98° 48' 19" 18° 55' 52" 1,408 m 

2.69 ha 
(16.81 rai) 

10 plots 

4 
Ban Meh 

Me 
(BMM) 

2020 

- used to be deforested for agriculture  
  activity (until 3–4 years ago) 
- beginning of recovery from 
  surrounding remnant forest 

98° 52' 53" 18° 54' 13" 601 m 

0.41 ha 
(2.56 rai) 

8 plots 

5 
Lampang 

(LP) 
2019 

- 1 year after restoration on quarry area 
- structured for bench planting with 
  nurse tree species. 

99° 35' 23" 18° 33' 12" 419 m 

0.66 ha 
(4.13 rai) 

8 plots 
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Figure 3.2 View and expected degradation level of each study site 
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3.2 Ground surveys 

3.2.1 Data collection 

Ground surveys were conducted by adopting the rapid-site-assessment protocol 

(RSAP) of FORRU-CMU (Elliott et al., 2013, Chapter 3) to be compatible with UAV-

derived data. Ten circular plots (5 m radius) were laid out randomly across each study 

site except for the two smaller sites where eight plots were installed (i.e., BMM, and LP, 

< 1 ha) to keep the distances among the circular plots consistent. The RSAP involves 

counting and measuring 3 categories of regenerants, ⅰ) trees larger than 30 cm GBH, ⅱ) 

smaller than 30 cm GBH (but longer than 50 cm tall), ⅲ) and live tree stumps. In this 

study, however, 1 m tall was used as the minimum regenerant size, and live tree stumps 

were not separately recorded, since very small saplings and coppices would not be 

detectable by UAVs. 

Height, and girth at breast height (GBH, 1.3 m above the ground) were measured 

for the counted trees. To measure various heights of trees in different degraded forests, 

various measurements were applied according to the conditions. Direct measurement 

using tape measure mounted on an extension pole (8 m maximum extension), and indirect 

measurement for the taller trees, using laser range finder (where applicable, with sparse 

density of trees and avoidable obstacles in the plot) and optical estimation from the top 

of the extension pole (where laser range finder cannot be applied due to the dense 

obstacles in the plot), were used. GBH was measured using a tape measure. For trees that 

branched below 1.3 m the largest stem was recorded as the main trunk. Tree-crown size 

(the most distinctive variable in UAV imagery) were measured by tape measure from 

below: length (longest distance) × width (perpendicular to length) (Figure 3.3).  



 

19 

 

Figure 3.3 Measurements from ground survey 

In each sampling plot, per cent ground cover was estimated into two categories, ⅰ) 

ground vegetation and weed cover, ⅱ) and exposed rocks and bare soil cover, with optical 

estimation by observers. Signs of livestock and fire were recorded respectively, without 

quantitative measurement. 
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3.3 Aerial surveys (UAV Flight) 

3.3.1 UAV flight 

A DJI Phantom 4 Pro drone, a quadcopter type of unmanned aerial vehicle (UAV) 

was used to collect RGB photographs by the on-board camera with 1 inch 20-megapixel 

CMOS sensor (Figure 3.4, Left).  

To apply SfM, photographs must overlap (and side-lap) by at least 70–80 %. The 

LITCHI application was used to design flight missions with this degree of overlap, using 

grids of parallel flight lines. According to the different sizes and shapes of the plots and 

limited battery time (c.a. 25 minute per flight), distances between flight paths (15–20 m), 

and flight speed (12–13 m/s) were adjusted to achieve the required overlap and flight 

height was set constantly to 50m above ground (Figure 3.4, Right).  

   

Figure 3.4 (Left) DJI Phantom 4 Pro, (Right) flight mission plan in LITCHI application 

To compare the variables from each plot between UAV-derived images and ground 

surveys, the central points of each plot were marked with checkboard designed plates 

colored red-black, which could easily be detected from aerial photographs (Figure 3.5). 
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Figure 3.5. (Left) red-black ground marker set at the center of circular plots,  

(Right) red-black ground marker, detected by UAV image sensing 

However, in less degraded sites with dense canopy cover (e.g., more closed 

canopy), these markers were covered by tree-canopy and not visible from the UAV 

camera. To solve this problem, additional visible points were set at the forest gaps and 

centers of circular plots were surveyed by theodolite (Figure 3.6), so that azimuth and 

distance among the points could be calculated using stadia method (Benton & Taetz, 

1991; Brinker & Wolf, 1984) and the centers of circular plots could be detected on ortho-

mosaic maps (orthophotos) derived from the UAV imagery. 

  

Figure 3.6 Wild Heerbrugg T1 theodolite 
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Figure 3.7 Principle of stadia method (Benton & Taetz, 1991; Brinker & Wolf, 1984) 

 In Figure 3.7, 𝐻 (horizontal distance) is the value to be calculated and applied on 

the ortho-mosaic map. 𝐼 is the measurement, we read on theodolite to the rod, set on the 

targeted point. By using trigonometric ratio, 𝑆 (slope distance) can be calculated with 

following equations. This process was applied to prevent the data collection being biased 

by setting circular plots at the visible forest gaps intentionally. 

𝑆

𝐼′
=  
𝑓

𝑖
 

𝑆 =  (
𝑓

𝑖
) 𝐼′ 

Where,  

 𝐼′ =  𝐼 × cos 𝛼, 

(
𝑓

𝑖
) = 100 ,is stadia interval factor, fixed value of the theodolite. 

Therefore, 𝐻 (horizontal distance) can be calculated with following equations. 

𝐻 = 𝑆 × cos 𝛼 

𝐻 = (
𝑓

𝑖
) ×  𝐼 × cos2 𝛼 
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3.3.2 Image processing for producing DEMs and orthophotos 

Using Open Drone Map (ODM) software, overlapping photographs from each site 

were processed into 3D point clouds and meshes by the SfM technique, to generate a 

Digital Terrain Model (DTM), a Digital Surface Model (DSM) and a 2D orthophoto. 

DTM and DSM are in a raster format, a grid of pixels identified with their 3D coordinates 

(x, y, and z), presenting ground features (DTM), and the upper surface of objects (DSM) 

respectively. Consequently, a Canopy Height Model (CHM) was derived by subtracting 

DSM from DTM (Figure 3.8). The orthophoto is a referenced image compiled by 

aggregating multiple-overlapping images, so that radial distortion of each raw image is 

removed, and the overall area can be projected as a completely vertical image map (Figure 

3.9). ODM is an open-source tool, with a user-friendly interface (WebODM), working on 

local devices and cloud processing services (WebODM Lightning), accessing powerful 

servers, to process large datasets more rapidly compared to WebODM. It is more 

affordable than most other commercial drone-mapping software offering similar 

functions and features. 

Between 250 and 400 pictures, generated at each site (depending on site size) were 

processed. DSMs and DTMs were generated at 2 cm resolution, and orthophotos were 

generated at 1 cm resolution—the most precise that could be generated with the image 

sets produced by the Phantom 4 Pro camera. The texturing data term for the 3D mesh, 

which affects orthophoto quality, was set to area mode, prioritizing images covering the 

largest area, which the tool’s developers recommend for forest surveys. 
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Figure 3.8 Comparison two types of DEM (i.e., DSM and DTM), and CHM derived 

from the difference between DSM and DTM 
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Figure 3.9 (Top) RGB single image, taken from a UAV, (Down) Referenced orthophotos 

derived from the multiple overlapped RGB images. A and B point to tree trunks and 

branches visible due to radial distortion in RGB image (Top), replaced by completely 

vertical tree-crowns in the lower orthophoto (Down). C and D point out different shape 

and area of gaps between RGB image and orthophoto.   
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3.3.3 Detecting tree-top points from CHMs 

Canopy Height Models (CHMs) were generated by subtracting DTMs from DSMs 

in R (Figure 3.8) using the package ‘rgdal’ to import spatial raster files (DTM and DSM) 

in R, and ‘raster’ for raster calculations (Roger et al., 2020; Etten et al., 2020). Generated 

CHMs were used to detect tree-top points and tree-crown boundaries, using the package 

‘ForestTools’ (Plowright & Roussel, 2020). This package detects tree-top points using a 

variable window filter algorithm, which assumes that higher trees have wider crowns, so 

the relationship of tree-height and crown-radius is given for the function of window radius 

from the center point. One by one, every pixel of the CHM is checked as the center point 

of a circular window (Plowright, 2020; Plowright & Roussel, 2020) (Figure 3.10). If the 

center point is the highest within each circular window, the algorithm defines the center 

point as a tree-top point.  

 

Figure 3.10 Concept diagram of variable window filter algorithm for detecting tree-top 

points. Where, hc is the height of the center point which the algorithm is currently 

inspecting, hh is the highest point in the drown window (transparent yellow circle in the 

figure), r is the radius determined based on the given function. When there is another 

point higher than the center point (hh > hc) in the drown window, the center point is 

rejected as the tree-top point. When the center point is the highest point (hc = hh) in the 

drown window, the point is determined as the tree-top point. 
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In this study, different window size equations and minimum tree height settings 

were applied, to find the best-fit setting for detecting tree-top points. The possible window 

size functions were adopted from arbitrary function, presented by package developers 

(Plowright, 2020), and developed empirically from the ground survey data. Individually 

matching detected tree-top points with the actual trees on the ground was not performed 

in this research. The circular sample plots were the units for correlation analysis between 

ground and UAV data. 

3.3.4 Delineating tree-crown boundaries from CHMs 

As each tree-top point was detected, boundaries of individual trees were drawn 

using the ‘mcws’ function in the same package, ‘ForestTools’ (Plowright & Roussel, 

2020). This function is generated from the maker-controlled watershed algorithm, which 

was originally developed to delineate drainage basins (Beucher & Meyer, 1993). It 

simulates flooding until the inserted threshold level and the filled water in basins 

segments features of each watershed. Depends on the set threshold levels, several basins 

are merged and segmented as a large watershed (Figure 3.11 B). To prevent this problem, 

marker-controlled watershed algorithm sets markers at the lowest point of each basin, 

and builds walls where water, from two basins, touches each other (Figure 3.11 A). CHM 

is similar with inverted profile of topography. The markers are not the lowest points in 

the basins, but the highest points on trees (tree-top points). Also, the walls are not built at 

the highest point of hills between basins, but at the lowest points between tree-crowns or 

at the edge of crowns (Plowright, 2020; Plowright & Roussel, 2020).  
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Figure 3.11 Principle of marker-controlled watershed segmentation (mcws) algorithm, 

delineating crown boundaries (adopted from Fisher, 2013).  
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3.4 Measuring variables from ground and UAV-derived data 

3.4.1 Tree stocking-density  

Tree-top points were counted in each circular plot and compared with the number 

of trees recorded in the ground surveys in each plot. Since tall trees obscured small trees 

when view from the air (but not in ground surveys) tree-top point counts were lower than 

ground tree counts, particularly for less degraded sites with high stocking-densities of 

larger trees. Therefore, per cent tree-canopy cover was also applied as an additional 

predictor variable in the multiple regression model. It was based on the assumption that 

higher per cent tree-canopy cover more obscures the view of UAV-camera to the small 

trees beneath larger trees.  

3.4.2 Tree height  

From the ground survey, the top 25 % of the highest trees in each plot, were 

compared with the height of tree-top points detected from CHM. Only top 25 % highest 

trees were compared because small trees, obscured by larger trees, were not detectable 

above the canopy. Descriptive statistic values were compared (e.g., max, mean, median). 

3.4.3 Per cent canopy cover accounting for overlap 

Tree-crown boundaries were detected from the CHM and the area of total canopy 

cover in each plot was converted to the per cent. On the ground, the crown projected area 

(CPA, m2) of individual trees were calculated with perpendicularly crossed two diameters 

of tree-crowns. In each plot, all the CPAs were summed and converted to a per cent of 

the plot. To deal with overestimated canopy cover, due to the overlapping crowns, an 

exponential equation was applied (Adesoye & Akinwunmi, 2016) 

𝐶′ = 100(∑(𝐶𝑃𝐴𝑖)

𝑛

𝑖=1

)𝐴−1 (eq 3.1) 

𝐶 = 100[1 − 𝑒𝑥𝑝(−0.01𝐶′)] (eq 3.2) 

Where,  

𝐶′ is the per cent canopy cover without accounting for overlap,  

𝐶𝑃𝐴𝑖 is crown projected area if individual trees (m2),  

𝐴 is the given area of the site (m2).  

𝐶 is the per cent canopy cover accounting for overlap.  
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3.4.4 Ratio of three elements of the ground 

2D orthophoto images were processed to separate pixels of exposed soil + rock 

from weed and vegetative cover. Canopy cover consists of tree-crown boundaries, 

detected from the CHM, were overlayed on the orthophotos. Canopy cover were then 

removed, to prevent their being misclassified as ground vegetation. Height differences 

were used from the CHM, to completely separate tree-crowns and ground vegetation in 

advance. Remaining pixels were classified as exposed soil or weedy vegetation using the 

function ‘color threshold’ tool of Image-J to vary filters for pixel hue, saturation, and 

brightness (HSB). Finally, all the pixels were classified into tree-canopy, ground 

vegetation, and exposed soil + rock, the relative cover of three elements of the ground 

could be determined (Figure 3.12).  

 

 

Figure 3.12 Example of separating three elements of the ground. (A) Canopy cover, 

merged tree-crown boundaries, delineated from CHM, (B) Canopy cover pre-removed 

orthophoto, exposed soil + rock detection using color threshold, (C) Per cent three ground 

elements 
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3.4.5 Aboveground Carbon Density (ACD) 

ACD was estimated from CHM data using Jucker et al.'s, (2018) regional allometric 

model for Asian tropical forests (eq 3.3).  

𝐴𝐶𝐷(𝑀𝑔𝐶/ℎ𝑎)𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 = 0.567 × 𝑇𝐶𝐻
0.554 × 𝐵𝐴1.081 ×𝑊𝐷0.186 (eq 3.3) 

Where,  

𝑇𝐶𝐻 is the mean top-of-canopy height (m),  

𝑊𝐷 is wood density = 0.52 g/cm2, local average, studied by Pothong et al., (2021), 

𝐵𝐴 is stand basal area (m2/ha) = 1.112 × 𝑇𝐶𝐻, modeled by Jucker et al., (2018). 

Corresponding ground-based ACD values were converted by following equations 

(eq 3.5, 3.6), where AGB was calculated using a regional AGB allometric model of 

northern Thailand (eq 3.4), recently developed by destructive sample analysis (Pothong 

et al., 2021). Trees whose GBH are larger than 15 cm, approximately DBH 5 cm, were 

applies for estimating AGB from ground measurement. 

 

𝐴𝐺𝐵(𝑘𝑔) = 0.134 × ( 𝐷2 ∙ 𝐻 ∙ 𝑊𝐷)0.847 (eq 3.4) 

Where,  

𝐷 is diameter at breast height of individual tree trunks,  

𝐻 is height of individual trees, 

𝑊𝐷 is wood density = 0.52 g/cm2, local average, studied by Pothong et al., (2021), 

 

𝐴𝐺𝐵(𝑘𝑔/ℎ𝑎) =  𝐴𝐺𝐵(𝑘𝑔/78.54𝑚2) ÷ 78.54𝑚2 × 10,000𝑚2 (eq 3.5) 

𝐴𝐶𝐷(𝑀𝑔𝐶/ℎ𝑎) =  𝐴𝐺𝐵(𝑘𝑔/ℎ𝑎) × 𝜌 ÷ 1,000𝑘𝑔 (eq 3.6) 

Where,  

𝜌 is carbon content = 0.44, local average, studied by Pothong et al., (2021). 
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3.5 Forest-Degradation Index (FDI) 

Not all the variables were incorporated into forest-degradation index (FDI). 

Variables were selected to be criteria into FDI by considering their correlation with 

ground-derived data, and their intercorrelations with each other. Methods for constructing 

the forest-degradation index were adopted from Modica et al., (2015); namely ⅰ) 

determining weight of each criterion, ⅱ) data normalization, to offset the different sizes 

of units, and ⅲ) data aggregation.  

3.5.1 Selecting criteria to be integrated into the index 

First of all, among the six UAV-derived variables, tested for correlation with 

ground survey results, only highly correlated variables were considered (correlation 

coefficient ≥ 0.70). Second, considered variables were screened for intercorrelation with 

each other, to prevent over-weighting certain characteristics in the overall degradation 

assessment. Strongly intercorrelated variables were eliminated according to the following 

principles: ⅰ) if two variables were negatively correlated, they were not considered as 

intercorrelated, because they affected degradation in different ways, ⅱ) when we found 

one intercorrelated variable was used for estimating another one (e.g., as a variable into 

a regression model or an equation, etc.), the integrated one is taken into FDI. For example, 

if we find ACD and height are intercorrelated, we take ACD because height is used as 

TCH in the equation for calculating ACD. Selected variables are criteria to be integrated 

into the index. 

3.5.2 Determining weight of each criterion using AHP method 

As definitions of forest degradation are inconsistent, the main factors and the 

weighted importance of each factor differ among observers. Determining the weighting 

of each criterion is therefore somewhat subjective and should be done by combining the 

opinions of various likely users of a degradation index. Therefore, the weight of each 

criteria was determined by an Analytic Hierarchy Process (AHP): a method of multi-

criteria decision analysis (MCDA). MCDA combines explicit and formal techniques to 

aid decision making using multiple criteria. (Figueira et al., 2005; Ananda & Herath, 

2009; de Castro & Urios, 2016). AHP has been widely used to integrate different levels 

of importance and weights of criteria for forest management (Modica et al., 2015). The 
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process uses experts’ judgement, in the form of pairwise comparisons, to gain relative 

preference or importance information, not only ordinal judgement, but also quantitative 

difference, among heterogenous criteria. Therefore it minimizes bias from decision 

makers. (Figueira et al., 2005; Modica et al., 2015; de Castro & Urios, 2016) 

Experts in the field of forest ecology and restoration were asked to perform a 

pairwise comparison. They were asked to select which criterion, in each pair, they 

considered to be most sensitive to changes in degradation levels and then to score how 

much more important on a scale from 1 to 9 i.e., score 1 (both criteria are equal or cannot 

be decided), score 2 (selected criterion is slightly more important), score 9 (selected 

criterion is much more important). See evaluation form in Appendix A. The scored 

pairwise comparisons were expressed as matrices, namely pairwise comparison matrix 

(PCM), which is the positive reciprocal matrix. In other words, when 𝑎𝑖𝑗  refers the 

comparative importance of criterion 𝑖 over criterion 𝑗, the comparative importance of 

criterion 𝑗 over criterion 𝑖 is 𝑎𝑗𝑖 = 1 𝑎𝑖𝑗⁄  .  

𝑃𝐶𝑀𝐸𝑥𝑝𝑒𝑟𝑡 1 ∶  

[
 
 
 
 
 
𝑎111 𝑎112 … 𝑎11𝑗

𝑎121 𝑎122 … 𝑎12𝑗

⋮ … ⋱ …

𝑎1𝑖1 𝑎1𝑖2 … 𝑎1𝑖𝑗 ]
 
 
 
 
 

 ,   𝑃𝐶𝑀𝐸𝑥𝑝𝑒𝑟𝑡 2  ∶  

[
 
 
 
 
 
𝑎211 𝑎212 … 𝑎21𝑗

𝑎221 𝑎222 … 𝑎22𝑗

⋮ … ⋱ …

𝑎2𝑖1 𝑎2𝑖2 … 𝑎2𝑖𝑗 ]
 
 
 
 
 

 , 

⋯    ,  𝑃𝐶𝑀𝐸𝑥𝑝𝑒𝑟𝑡 K  ∶  

[
 
 
 
 
 
𝑎𝑘11 𝑎𝑘12 … 𝑎𝑘1𝑗

𝑎𝑘21 𝑎𝑘22 … 𝑎𝑘2𝑗

⋮ … ⋱ …

𝑎𝑘𝑖1 𝑎𝑘𝑖2 … 𝑎𝑘𝑖𝑗 ]
 
 
 
 
 

 

Where,  

𝑘 is the number of experts evaluating of pairwise comparisons,  

 𝑖, 𝑗 = 1, 2, 3, …𝑛 , and 𝑛 is the number of criteria, 

𝑎𝑘𝑖𝑗 is the scored importance of criterion 𝑖 compared to 𝑗, evaluated by expert 𝑘. 
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It is natural that PCMs, evaluated by humans, may be inconsistent ordinally (i.e., if 

A is more important than B, and B is more important than C, totally consistent evaluation 

must imply A is more important than C) and cardinally (i.e., if A is two times more 

important than B, and B is three times more than C, the totally consistent evaluation must 

imply A is six time more important than C) (R. W. Saaty, 1987; T. L. Saaty, 2003). AHP 

deals with acceptable inconsistency, by checking for consistency level (eq 3.7, 3.8). 

𝐶𝐼 =  
𝑚𝑎𝑥  −  𝑛

𝑛 − 1
 (eq 3.7) 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (eq 3.8) 

Where,  

𝐶𝐼 is the consistency index, 

𝑚𝑎𝑥 is the principal eigenvalue (perron vector) of the given 𝑃𝐶𝑀𝑒𝑥𝑝𝑒𝑟𝑡 𝑘, 

𝐶𝑅 is the consistency ratio,  

𝑅𝐼 is the random consistency index determined by the number of criteria. 

𝑃𝐶𝑀𝑠𝑒𝑥𝑝𝑒𝑟𝑡 𝑘 , whose CR is less than 0.1 (10 %), were considered acceptable and 

were included in 𝑃𝐶𝑀𝑡𝑜𝑡𝑎𝑙, The geometric mean of each pairwise comparison of total 

𝑃𝐶𝑀𝑡𝑜𝑡𝑎𝑙 was calculated by eq 3.9. (T. L. Saaty & Shang, 2011) 

𝑃𝐶𝑀𝑡𝑜𝑡𝑎𝑙 =

[
 
 
 
 
𝑎11 𝑎12 … 𝑎1𝑗

𝑎21 𝑎22 … 𝑎2𝑗

⋮ … ⋱ …

𝑎𝑖1 𝑎𝑖2 … 𝑎𝑖𝑗 ]
 
 
 
 

 

𝑎𝑖𝑗 = (𝑎1𝑖𝑗 × 𝑎2𝑖𝑗 × ⋯× 𝑎𝑘𝑖𝑗)
1
𝑘 (eq 3.9) 

Where, 

𝑎𝑖𝑗 is the geometric mean of the scored importance of criterion 𝑖 compared to 𝑗 

from all experts (1, 2, …, 𝑘) 

𝑘 is the number of experts evaluating of pairwise comparisons, 

𝑖, 𝑗 = 1, 2, 3, …𝑛 , and 𝑛 is the number of criteria, 

𝑎𝑘𝑖𝑗 is the scored importance of criterion 𝑖 compared to 𝑗, evaluated by expert 𝑘. 



 

35 

Weights of criteria were derived by the eigenvector method (R. W. Saaty, 1987), 

specifically represented with principal eigenvector, satisfying  

𝐴𝑤 = 𝑚𝑎𝑥𝑤. (Modica et al., 2015; T. L. Saaty, 2003). Where A refers 𝑃𝐶𝑀𝑡𝑜𝑡𝑎𝑙; 𝑤 is 

the local priority vector, represented with principal eigenvector, implementing the weight 

of each criterion (𝑤 = 𝑤1, 𝑤2, … , 𝑤𝑛); 𝑚𝑎𝑥 is the principal eigenvalue (perron vector) 

of 𝑃𝐶𝑀𝑡𝑜𝑡𝑎𝑙 (Goepel, 2018). 

3.5.3 Data normalization and data aggregation 

Before computing all measured criteria with determined weight applied, the data 

were normalized (eq 3.10). This was because multiple criteria had different sizes of 

measured values, ranges, and units. Without normalization, any criterion represented by 

big numbers would add bias to the results. After normalization, the criteria were all 

converted into ranges of 0 to 1. 

𝑆′ = 
𝑠 −min{𝑠𝑛}

max{𝑠𝑛} − min{𝑠𝑛}
 (eq 3.10) 

Where,  

𝑆′ is the normalized score, 

𝑠 is the measured score, 

max{𝑠𝑛} ,min{𝑠𝑛} are the maximum and minimum score of the 𝑛𝑡ℎ criterion in 

the overall range.  

The calculated weightings were than applied to the normalized criteria, and the 

results were aggregated into the forest-degradation index, using weighted linear 

combination (WLC) (eq 3.11). 

𝐹𝐷𝐼 = 10∑𝑤𝑖 ∙ 𝑠𝑖
′

𝑛

𝑖=1

 (eq 3.11) 

Where,  

FDI is Forest-Degradation Index of the given site, 

𝑖 is the each of criteria applied into the FDI, 

𝑤𝑖 is the determined weight of the 𝑖𝑡ℎ criterion, 

𝑠𝑖
′ is the normalized score of the 𝑖𝑡ℎ criterion. 
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CHAPTER 4 

Results and Discussion 

4.1 Forest-degradation assessment by ground survey in study sites 

Table 4.1 describes selected sites based on the ground survey data. It shows 

characteristic of each study site, comparison among sites, and wideness of a degradation 

and/or restoration rage in five study sites. 

Table 4.1 Ground survey results of five selected sites 

Site 
(Years after 
restoration) 

Survey 
Date 

YY-MM-DD 

No. of 
Sample 

plots 

Mean no. of trees 
per circle, 78.51 m2 

(Height >= 1.0 m) 

Tree stocking-
density (no.) % Canopy 

Cover 
% Ground 

Vegetation 
% Exposed 
Soil + Rock 

Stage 

ha-1 rai-1* 

BMSM  (8Y) 20-11-02 10 29.9a 3,833.3a 613.3a 86.50a 3.88c 9.62b Stage 1 

ML (6Y) 20-09-04 10 22.5a 2,884.6a 461.5a 74.78a 22.66bc 2.56b Stage 3 

BPK (4Y) 20-07-03 10 10.3b 1,320.5b 211.3b 67.66a 32.11b 0.23b Stage 3 

BMM (0Y) 20-06-13 8 4.5b 576.9b 92.3b 4.97b 91.21a 3.82b Stage 3 

LP (1Y) 20-09-25 8 1.4b 176.3b 28.2b 5.51b 69.48a 25.01a Stage 5 

Note: *6.25 rai = 1 ha, a-c within each column, comparing sites, means without a common superscript significantly differ 

(P < 0.05). 

Generally, both tree stocking-density and per cent canopy cover increased with plot 

age, but LP site was ranked as more degraded, compared with the BMM site despite order 

plot age. Differences in per cent canopy cover between the BMM and LP sites were 

insignificant, but significantly higher per cent exposed soil + rock in the LP site led it as 

more degraded site.  

According to FORRU-CMU’s system of five forest-degradation stages (Elliott et 

al., 2013), LP was categorized as Stage-5, because poor soil conditions limited 

herbaceous weed growth, whilst BMM was classified as Stage-3 degradation, because 

ground vegetation cover (92.21 %) was larger than canopy cover (4.97 %). LP was a 

bench terrace in a limestone-quarry, ameliorated with loosened substrate and planted with 

saplings in 2019. BMM was an abandoned agricultural site, planted with saplings of 

framework tree species in 2020, dominated by grasses and bamboos, with sparse tall trees 

and shrubs, i.e., better preliminary conditions than at the LP site. 
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BMSM was the only site where tree stocking-density exceeded 3,100 trees/ha, 

which is the tipping point between Stage-2 and Stage-3 degradation. Moreover, per cent 

canopy cover at the BMSM site was sufficiently high to effectively exclude herbaceous 

weeds, so that site was categorized as Stage-1 degradation. In contrast, tree stocking-

densities on the ML and BPK sites were less than 3,100 trees/ha, and herbaceous weed 

growth was sufficient to inhibit performance of tree seedlings and saplings in large gaps. 

However, because the soil remained intact and potential seed sources of forest trees 

remained nearby, they were categorized as Stage-3 degradation and were undergoing 

restoration by the framework species method. 

 

Figure 4.1 Tipping points in degradation levels determining different forest-restoration 

strategies (adopted with permission from Stephen Elliott) 

The five selected study sites exhibited degradation stages 1, 3 and 5 (Figure 4.1). 

Despite missing degradation stages 2 and 4, the sites captured degradation intensity over 

a wide range, from Stage-1 to Stage-5 with medium degradation (Stage-3) represented at 

3 sublevels, differing markedly in per cent cover of the three quantified ground elements 

and tree stocking-density. The range of degradation levels was considered to be wide 

enough for development of a forest-degradation index. Furthermore, the variation among 

the three Stage-3 sites emphasized the need for a more quantifiable forest-degradation 

index with higher acuity than that achieved by FORRU-CMU’s qualitative degradation 

classification system (Elliott et al., 2013).  
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4.2 UAV flight and image processing  

4.2.1 Collected images by UAV flight 

Table 4.2 UAV flight records, weather conditions and flight-mission settings when 

capturing aerial RGB images (50 m above ground) 

Site 
Flight 
Date 

YY-MM-DD 

Flight 
Time 

Weather Condition 
Plot locations 
referencing 

No. of 
pictures 

Flight mission setting 

Overlap (%) 
Average Distance 

Between Flight 
Grid Lines 

UAV Speed 

BMSM 20-11-04 
11:37 

-  11:51 

Heavy clouds under 
strong sunlight, strong 

windy (c. 9.6 km/h). 

Ground 
marker 

+ 
Stadia 

method 
283 75 % 19.0 m 12 km/h 

ML 20-11-09 
10:13 

-  10:32 
Moderate cloudy, 

weak wind. 
Ground 
marker 

+ 
Stadia 

method 
335 76 % 18.2 m 12 km/h 

BPK 20-10-24 
15:48 

-  16:10 
Sunny with low solar 
altitude, weak wind. 

Ground 
marker 

+ 
Stadia 

method 
335 75 % 19.0 m 13 km/h 

BMM 20-06-13 
11:38 

-  11:51 
Sunny with high solar 
altitude, weak wind 

Ground  
marker 

205 80 % 15.2 m 10 km/h 

LP 20-09-26 
13:07 

-  13:21 
Sunny with high solar 
altitude, weak wind 

Ground  
marker 

228 80 % 15.2 m 10 km/h 
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4.2.2 Processed DEMs and orthophotos 

 

Figure 4.2 Orthophotos from five sites in unified scale. Comparisons with DEMs (i.e., 

DSM, DTM, and CHM) are presented in Appendix B. 



 

40 

4.2.3 Accuracy of positioning circular plots using stadia method 

Application of the stadia method, using a theodolite, was necessary at three sites, 

i.e., BMSM, ML, and BPK, where ground markers were sometimes obscured beneath tall 

tree-crowns. All of 10 ground markers in BMSM were not detectable on UAV-derived 

images, but 11 plots out of 20 plots from ML and BPK were visible in the RGB images 

and in the orthophotos. Therefore, these were applied to achieve accuracy of the stadia 

method compared with GPS coordinates. (Figure 4.3).  

 

Figure 4.3 Examples of stadia method and comparisons with GPS detected points in 

orthophoto of BPK site. (Left) Plot point was visible on UAV-derived image (actual plot 

point; red square) and estimated using stadia method (red point) from visible subpoint 

(pink square). Two points were closer than the distance between GPS detection (grey 

triangle) and actual plot point. (Right) ground marker was not visible, and plot point was 

estimated using stadia method. Results of stadia method at the three sites, where it was 

necessary, are presented in Appendix C. 
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High accuracy in matching UAV-derived images with the ground circular sample 

plots was achieved by using the stadia method, compared with GPS receiver (Figure 4.3 

and Table 4.3).  

Table 4.3 Distance to reference (visible) center point of 11 plots (in meters)  

Distance to 
reference 

Methods 

GPS coordinates Stadia Method 

Mean  SD 3.71  1.45 0.79  0.77 

Min 2.00 0.11 

Max 6.28 2.83 
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4.3 Tree-top points detected by variable window filter algorithm 

4.3.1 Variable window-size functions 

1) Arbitrary window-size function presented by package developers 

In the R package ‘ForestTools’, the developers presented an arbitrary function 

(Plowright, 2020). 

𝑟𝑠 = 0.05 ∙ ℎ + 0.6 

2) Empirically developed window-size functions 

From the ground-measured data of individual trees (n = 393), the relationship 

between tree height (m), and average tree-crown radius (m) (from the two crossed 

diameters, measured perpendicularly) was developed into functions based on various 

regression models (Figure 4.4) as follows:  

Simple linear: 𝑟𝑑 = 0.213287 ∙ ℎ + 0.324948 , (R2 = 0.6001) 

Quadratic linear: 𝑟𝑒 = 0.001009 ∙ ℎ2 +  0.196022 ∙ ℎ + 0.380694, (R2 = 0.6004) 

Logarithmic: 𝑟𝑙 = 1.26080 ∙ log(ℎ) −  0.45780, (R2 = 0.5282)  

 

Figure 4.4 Empirically developed window-size functions 
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4.3.2 The best setting of the various functions and minimum tree heights 

All the equations, except one (logarithm model), showed that setting minimum tree-

top point height to 1.0 m resulted in a more accurate tree count (compared with ground 

survey data) than when it was set to 1.5 m (Figure 4.5).  

 
Figure 4.5 Comparison of settings, for detecting tree-top points by variable window 

filter algorithm, with different window-size functions and minimum tree heights  
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The empirically developed logarithm model resulted in a different pattern compared 

with the other linear models (greater scattering, comparing number of trees), particularly 

with the 1.0 m min-height setting, so RMSE was exceptionally high (29.86) compared 

with all other settings. The distribution of commission and omission errors also differed. 

Unlike other linear models, which resulted in more errors of omission (underestimating 

tree numbers) than of commission, the logarithmic model, detected similar numbers of 

omission and commission errors. The other two empirical functions: simple linear B, and 

quadratic linear, had similar RMSE, R2 and correlation coefficients.  

In contrast, the simple linear A model (arbitrary function introduced by (Plowright, 

2020). resulted in the lowest RMSE, and highest R2 and correlation coefficient. 

Consequently, the simple linear A model was used to generate the window-size function 

for tree-top point detection in the CHM, and the minimum height of tree-top points was 

set to 1.0 m. 
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4.4 Tree-crown boundaries detected by watershed algorithm 

4.4.1 The best setting of minimum crown-boundary height 

Since the setting for detecting tree-top points was selected using the simple linear 

A model, the detected tree-top points were used as markers in watershed algorithms to 

detect tree-crown boundaries. Figures 4.6 & 4.7 present the effect of minimum tree-crown 

boundary height on detection of canopy cover.  

 

Figure 4.6 Example result of detected tree-crown boundaries comprising canopy cover, 

with different minimum crown boundary heights (0.5 m, and 1.0 m from top to down) 
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Figure 4.7 Comparison of setting, for delineating tree-crown boundaries by watershed 

algorithm, with different minimum crown boundary heights 

The per cent canopy cover was highly correlated in both settings (Setting 1: R2 = 

0.74, and r = 0.85, Setting 2: R2 = 0.69, r = 0.83) (Figure 4.7), but as the Setting1 was 

more correlated with smaller RMSE (19 %), it was selected for the analysis. 
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4.5 Correlation between the variables from ground and UAV surveys  

4.5.1 Tree stocking-density 

Tree stocking-density, recorded during ground surveys, was correlated weakly with 

the number of tree-top points, detected on the CHM (R2 = 0.12, r = 0.35) (Figure 4.8 

Left). Consequently, actual tree stocking-density could not be determined accurately from 

UAV-derived data. This was because small trees, obscured by tall tree-crowns, were 

counted in the ground survey , but not detected from above. Thus, an additional predictor 

variable, i.e., per cent canopy cover in each sample plot, was applied using a multiple 

regression model. Predictor variables in a multiple regression model, should not be 

strongly inter-correlated and should be correlated with the dependent variable. As two the 

predictor variables (i.e., tree stocking-density and per cent canopy cover from the CHM) 

and one dependent variable (i.e., tree stocking-density from ground-survey) satisfy this 

condition, tree stocking-density was estimated, by a multiple regression model, from the 

two variables derived from the CHM. Adjusted tree stocking-density, from the CHM, was 

highly correlated (R2 = 0.71, r = 0.84) with the tree stocking-density recorded during 

ground surveys. And the root mean square error (RMSE) was 493 trees per hectare, which 

is about 4 trees per plot (5 m-radius circular plot) (Figure 4.8 Right).  

 

Figure 4.8 Scatter plots of tree stocking-density. (Left) Tree stocking-density from 

CHM, (Right) adjusted tree stocking-density from multiple regression model derived 

from tree stocking-density and per cent canopy cover both from the CHM. 
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4.5.2 Tree height 

Tree height variables, derived from the CHM, were weakly correlated with the same 

measured in ground surveys (max, mean and median tree height in each circular sample 

plot) (Figure 4.9). Highest correlation between UAV-derived and ground data was 

achieved for max tree height (R2 = 0.51, r = 0.71). However, tallest tree per plot is a poor 

representation of overall tree height, since tallest trees are outliers. Therefore, their use is 

likely to overestimate tree height at the site level. Mean tree height reduced the influence 

of outliers, despite weak correlation (r = 0.56) and low R2 (0.31), and was a better measure 

than median height (R2 = 0.23, r = 0.48). Furthermore, RMSE of mean height was lower 

(3.3 m) than for maximum (4.1 m) and median height (3.5 m). 

Figure 4.9 Scatter plots of tree height descriptive statistic values. (Left) Max height, 

(Right) mean height, (lower) median height.  
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4.5.3 Per cent canopy cover, ground vegetation, and exposed soil + rock 

Relative cover of the three ground-cover elements (canopy cover, ground 

vegetation, and exposed soil + rock), detected from UAV-derived data, were all highly 

correlated with ground-survey data. Per cent canopy cover was the most highly correlated 

(R2 = 0.82, r = 0.91), followed by ground vegetation (R2 = 0.71, r = 0.84) and exposed 

soil + rock (R2 = 0.56, r = 0.75) (Figure 4.10). 

 
Figure 4.10 Scatter plots of per cent of three ground-elements. (Left) per cent canopy 

cover, (Right) per cent ground vegetation, (Lower) per cent exposed soil + rock.  
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4.5.4 Aboveground Carbon Density (ACD) 

CHM-derived ACD was not correlated with ACD calculated from ground survey 

data (R2 = 0.24, r = 0.49) (Figure 4.11 Left). Adding another predictor variable, tree 

stocking-density, to create a multiple linear regression model, increased the correlation 

(R2 = 0.45, r = 0.67) and reduced RMSE (8.86 MgC/ha) (Figure 4.11 Right). However, 

overestimation was evident for the more degraded sites, e.g., LP and BMM.  

 

Figure 4.11 Scatter plots of ACD. (Left) ACD from CHM, (Right) Adjusted ACD from 

multiple regression model with ACD and tree stocking-density from CHM. 
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4.6 Estimated measurements of overall sites 

Figure 4.12 presents comparisons of tree stocking-density estimates, based on data 

from the circular sample plots and from UAV imagery across each entire plot (all 

standardized to number of trees per hectare).  

Figure 4.12 Mean stocking-density estimates from sample plots: ⅰ) sampled ground 

survey (dark grey with pattern), ⅱ) sampled UAV survey (light grey with pattern), and 

ⅲ) overall-detected UAV survey (each whole site, light grey with no pattern). Stocking-

density from UAV surveys were estimated by multiple regression model. 

In the least degraded sites (BMSM and ML), where stocking-densities were high, 

UAV surveys substantially underestimated stocking-density (by 50.6 % and 42.5 % 

respectively for the sample-based estimates compared to the sampled ground survey). 

This was because the crowns of tall trees obscured those of small trees, when viewed 

from above. Even use of the multiple regression model, which combined tree-top points 

with canopy cover, was not enough to estimate the number of hidden trees. 

In contrast, in the BPK site, use of UAV imagery for sample plots over-estimated 

stocking-density (22.6 %), probably because fewer small trees were recorded in ground 

surveys at this site (see Figure 4.14), whilst dense canopy cover (74.9 % Figure 4.13), in 

the multiple regression model, contributed to a prediction of higher stocking.  
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Similarly, tree stocking-density was overestimated in LP site—the limestone quarry 

planted with trees one year previously. Canopy cover was not high enough (12.40 %) to 

obscure many smaller trees, but allowed estimation of hidden trees by the model. The 

histogram (Figure 4.14) shows about 90 % of trees were in the smallest size bin (1 ~ 3 

m), and very few trees were in the second smallest size class (3 ~ 5 m)—not enough to 

obscure small trees. 

 

Figure 4.13 Per cent three ground elements, averaged from sample plots: ⅰ) sampled 

ground survey, ⅱ) sampled UAV survey, and ⅲ) overall-detected UAV survey (each 

whole site). 
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In contrast, at the BMM site, even though large trees were not dominant, the CHM 

underestimated numbers of trees (by 65.69 %). This may have been due to dense cover 

of tall weeds (83.41 %—highest weed cover among the five sites). Many of the small 

trees, found beneath the weeds in the ground survey, were not detected in the CHM. 

Seventy-nine per cent of trees were in the smallest size class (1-3 m) (Figure 4.14). 

Another issue at BMM was that tree stocking-density and per cent canopy cover were 

substantially underestimated from sampled drone survey (SD), extrapolated from the 

sample circular plots, compared with results from overall drone (OD), collected across 

the entire site, by 71.79 and 60.19 % respectively. This may have been due to non-

representativeness of the randomly positioned sample plots, which excluded most of the 

few very large trees that were present on the study site. Such trees, of course were 

included in the overall site survey by UAV.  
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Figure 4.14 Per cent frequency of tree size class from ground surveys in sample plots 

for each site 
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4.7 Forest-Degradation Index (FDI) 

4.7.1 Selected criteria to be integrated into the index 

 Of the six variables examined, only four were highly correlated between ground 

surveys and UAV imagery (over sample plots) (r ≥ 0.70, Table 4.4). Consequently, tree 

stocking-density, per cent canopy cover, per cent ground vegetative and per cent exposed 

soil + rock were initially considered for inclusion in the FDI. 

Table 4.4 R-Squared and correlation coefficients with reference (ground surveyed data), 

highly correlated coefficients are in bold  

 

 

 

 

 

 

The four remaining variables were then examined for intercorrelation, to prevent 

over-weighting of related factors in the overall FDI. Each of the 4 variables was correlated 

with the other 3 (Figure 4.15). High correlation was found for three pairs of the pairwise 

correlations, i.e., tree stocking-density and per cent canopy cover (r = 0.97); tree stocking-

density and per cent ground vegetation (r = -0.94); and per cent canopy cover and per 

cent ground vegetation (r = -0.97). Per cent canopy cover was screened out, because it 

was already used as a predictor variable for estimating tree stocking-density in the 

multiple regression model. However, per cent ground vegetation was not screened out, 

because it was negatively correlated with the other variables. 

Consequently, three variables were selected as criteria for inclusion in the FDI: tree 

stocking-density, per cent ground vegetation, and per cent exposed soil + rock. 

Variables R squared 
Correlation 

coefficient (r) 

Tree stocking-density 0.71 0.84 

% Canopy cover 0.82 0.91 

Mean of height 0.31 0.56 

% Ground vegetative 0.71 0.84 

% Exposed soil + rock 0.56 0.75 

Aboveground carbon 
density (ACD) 

0.45 0.67 
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Note: Numbers are correlation coefficients. Size of fonts is directly proportional with level of correlations.  

Asterisks indicate significant difference between two methods: 
*
 (P < 0.05); 

***
 (P < 0.001). 

Figure 4.15 Intercorrelations among the four variables that were closely correlated 

between UAV and ground surveys 

4.7.2 Weighting each criterion using the AHP method 

Nine experts (in the field of forest ecology and restoration) performed pairwise 

comparison among the criteria, generating 9 pairwise matrices (PCMs). Of these only 4 

responses achieved acceptable consistency ratios (CR) of lower than 0.1 (10 %). 

Geometric means within the 4 acceptable PCMs were then determined (𝑃𝐶𝑀𝑡𝑜𝑡𝑎𝑙). From 

this matrix, the comparative weights of each criterion (𝑤1, 𝑤2, 𝑤3) were calculated, whose 

sum is equal to 1. 

𝑃𝐶𝑀𝑡𝑜𝑡𝑎𝑙 =

[
 
 
 
 
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33]
 
 
 
 

 =  

[
 
 
 
 
1 0.144 0.170

6.964 1 1.189

5.886 0.841 1 ]
 
 
 
 

 

𝑤1 =  0.072, 𝑤2 = 0.504, 𝑤3 = 0.424 

Where, 

Criterion 1: tree stocking-density,  

Criterion 2: per cent ground vegetation,  

Criterion 3: per cent exposed soil + rock. 



 

57 

4.7.3 Data normalization and resultant FDI 

Table 4.5 Data min-max normalization 

Note: Numbers are the measured value of each criterion in each site, and numbers in brackets are normalized scores. 
Numbers rounded to up or down nearest 0.01. 

Minimum and maximum scores of each criterion were determined (Table 4.5)., 

based on the scores from the sites at various stages of degradation and were used for 

normalizing the measured scores (Table 4.5). The normalized scored were aggregated 

into the FDI by weighted linear combination (WLC), resulting in equation 4.1.   

   𝐹𝐷𝐼 = 10 ×

{
  
 

  
 (

𝑇𝐷−2,352.14

577.62−2,352.14
) × 0.072

+(
𝑉𝐸𝐺−10.13

62.76−10.13
) × 0.504

+ (
𝑆𝑂𝐼𝐿−0.00

36.96−0.00
) × 0.424 }

  
 

  
 

  

        →    10 ×

{
 
 

 
 
− (𝑇𝐷 − 2,352.14) × 0.000041

+(𝑉𝐸𝐺 − 10.13) × 0.009568

+(𝑆𝑂𝐼𝐿 − 0.00) × 0.011478 }
 
 

 
 

  

         →    10 × (−0.000041 ∙ 𝑇𝐷 + 0.009568 ∙ 𝑉𝐸𝐺 + 0.011478 ∙ 𝑆𝑂𝐼𝐿 − 0.001206)  

∴  𝐹𝐷𝐼 = −0.00041 ∙ 𝑇𝐷 + 0.09568 ∙ 𝑉𝐸𝐺 + 0.11478 ∙ 𝑆𝑂𝐼𝐿 + 0.01206           (eq 4.1) 

Selected 
 Three Criteria 

1 2 3 

Tree stocking-density  
per hectare (TD) 

Per cent Ground 
Vegetation (VEG) 

Per cent Exposed  
Soil + Rock (SOIL) 

weight (𝑤𝑖) 0.072 0.504 0.424 

Max degraded   577.62 62.76 36.96 

Min degraded 2352.14 10.13    0.00 

SI
TE

 

BMSM 2352.14 (0.00) 29.00 (0.36) 0.00 (0.00) 

ML 1982.95 (0.21) 10.13 (0.00) 2.95 (0.08) 

BPK 1901.05 (0.25) 35.78 (0.49) 0.00 (0.00) 

BMM 701.67 (0.93) 62.76 (1.00) 9.95 (0.27) 

LP 577.62 (1.00) 47.54 (0.71) 36.96 (1.00) 
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Finally, the FDI of each site was computed in Table 4.6 and compared with the 

originally assigned degradation stage of each site (Stage 1-5). The FDI scale (0-10) was 

divided into 5 equal intervals (each interval of 2 units) corresponding with the 5 FDI 

categories of degradation (Ⅰ-Ⅴ) illustrated in figure 4.1.  

Table 4.6 Calculated FDI and comparison between five stages and FDI categories 

The FDI placed BMSM and LP at the least (Category-Ⅰ) and the most degraded 

classes (Category-Ⅴ), respectively, as originally assigned (Stage-1 and Stage-5). 

However, it moved ML to Category-Ⅰ degradation, from its original assignment, Stage-3; 

with an FDI even lower than that of BMSM (Stage-1).  

The reason why ML was assigned to Stage-3 during the ground survey was because 

tree stocking-density, estimated from the circular plots (2,884 tree/ha (Figure 4.12)), was 

slightly below the tipping point, at which tree planting is considered necessary to 

complement ANR (3,100 trees/ha (Figure 4.1, Table 2.1)), even though mean stocking-

density did not differ significantly between ML and BMSM. The same is also true of per 

cent three ground elements (in the ground survey). This contrasts with the UAV imagery 

which estimated that per cent ground vegetation cover at BMSM was more than double 

that at ML (Figure 4.13)—a criterion which the AHP weighted most heavily (0.504) in 

the FDI—resulting in a higher FDI for BMSM. The ground surveys determined this result 

is understandable, considering that restoration at ML was initiated just two years after 

BMSM. Furthermore, ML retained several large remnant trees from the original forest at 

the start of restoration, whereas the BMSM plot was being restored from cleared 

agricultural land (Figure 4.16).  

Five Stages of degradation 
from ground surveys. 

SITE 
Forest-Degradation Index 

(FDI) 
FDI Category 

(Ⅰ ~ Ⅴ) 

Stage 1 BMSM 1.81 Ⅰ (0.00 ~1.99) 

Stage 3 ML 0.49 Ⅰ (0.00 ~1.99) 

Stage 3 BPK 2.64 Ⅱ (2.00 ~ 3.99) 

Stage 3 BMM 6.85 Ⅳ (6.00 ~7.99) 

Stage 5 LP 8.54 Ⅴ (8.00 ~10.00) 
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Figure 4.16 (Top) BMSM re-planting day in 2012: small previously planted trees which 

have survived from fire two years previously (see Table 3.1); (Down) ML planting day 

in 2014: remnant enrichment planting amongst scattered remnant mature trees. 

Another interesting comparison is that between BPK and BMM which the FDI 

separated as Category-Ⅱ and Category-Ⅳ respectively, whereas the ground survey data 

classify both of them together into Stage-3. Ground survey data placed BPK into Stage-

3 because its tree stocking-density (1,321 trees/ha, Figure 4.12) was below 3,100 trees/ha, 

the tipping point between Stage-2 and Stage-3 degradation (Table 2.1). Furthermore, the 

ground survey data placed the BMM into Stage-3 because its soil condition did not limit 

establishment of tree seedlings, the tipping point between Stage-3 and Stage-4 
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degradation (Table 2.1, Figure 4.1). However, since the FDI was not limited by rigid 

tipping point and aggregated ranges of criteria, it was more able to separate two sites. 

Significant difference of tree stocking-density between two sites were also visible during 

ground survey (Figure 4.17).  

 

 

 

Figure 4.17 (Top) Ground survey in BPK: large and dense trees; (Down) Ground survey 

in BMM: dense weed, low tree stocking-density but no exposed soil + rock. 
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4.8 Limitations and challenges 

4.8.1 Weather, time of day and seasonality  

Phantom 4 pro drone used in this project is not water-proof and therefore it is 

inadvisable to fly during rain due to the risk of short-circuiting in the motors. Several 

flights during this study were aborted due to on-coming rain. Furthermore, this UAV 

cannot be flown if wind speed exceeds 24km/h and even below this wind speed, flying 

UAVs against wind drains the battery power and shorten mission time, and thus limiting 

the area covered. So, continuous attention on weather condition is required when 

operating UAVs in the field. Therefore, development of water-proof UAVs with longer 

battery time will be required if UAVs play a role in forest restoration (Elliott et al., 2020). 

UAV image quality is greatly affected by the time of day and weather (Figure 4.18). high 

elevation sites are frequently shrouded in thick mist. Furthermore, strong sunlight causes 

high contrast (see Figure 4.18 Center). In particular, SfM software has difficulties 

distinguishing objects in dark shadows. Similarly, low solar angle, usually in the late 

afternoon, creates long shadows across sites. Therefore, it is recommended to fly in the 

middle of the day when the shadows are minimal (Elliott et al., 2020). 

 

Figure 4.18 Examples of different quality of UAV-derived RGB images from 

various weather condition in ML site (1,290 m a.s.l.). (Left) cloud interrupted condition, 

13:42 PM, 4th September, 2020, (Center) high contrast from strong sunlight, 14:16 PM, 

26th October, 2020, (Right) comparatively stable light contrast without obstacles, 11:30 

AM, 9th November, 2020. 
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The two most significant seasonal effects related to color of the vegetation and tree 

phenology. In the dry season, weeds turn brown and appear similar to exposed soil; in the 

rainy season, they are green and appear similar to tree-crowns. Trees also undergo 

seasonal changes in appearance. Particularly, deciduous trees, which may be completely 

bare in the dry season, are totally green in the rainy season. However, because the 

algorithm distinguishes trees from weeds by height (not color), the optimal season to fly 

is just after the end of rainy season when both trees and weeds are green, and rain is less 

likely to disrupt flight.  

4.8.2 Absence of ground control points (GCPs) 

Ground control points (GCPs) are marked points on the ground, recognizable from 

above, whose precise coordinates are measured by GPS receivers with enhanced 

precision, e.g., Real-Time Kinematic (RTK) or Post-Processing Kinematic (PPK) GPS 

receivers. GCPs are used as thumbtacks for geo-referencing UAV data to achieve high 

degree ⅰ) global accuracy, corresponding to the actual coordinate system and ⅱ) local 

accuracy for measurements in DEMs and orthophotos (Coveney & Roberts, 2017; 

DroneDeploy, 2017; Sanz-Ablanedo et al., 2018). 

However, in this study, GCPs could not be used because of highly dense canopy 

cover in some study sites (i.e., BMSM and ML), where suitable position for setting GCPs 

could not be determined. Another reason was the expensive cost for RTK or PPK GPS 

receivers (e.g., DJI D-RTK 2 High Precision GNSS Mobile Station, priced about 3,600 

USD). 

Therefore, the stadia method was applied instead, to conform sample plots on the 

processed DEMs and orthophotos to the actual coordinate system (global accuracy) (see. 

4.2.3 Accuracy of positioning circular plots using stadia method). However, absence of 

GCPs still affected the local accuracy of measurements, especially of tree height in 

CHMs. It may have contributed to the low accuracy in estimating mean tree heights 

(Figure 4.9) and ACD (Figure 4.11) (which were calculated from absolute height values 

in CHMs). In contrast, tree stocking-density and per cent canopy cover, derived from 

comparative heights in CHMs were determined with higher accuracy. Zahawi et al. 

(2015) compared non-GPS CHM, generated from point clouds without geo-referencing, 
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and GPS CHM, geo-referenced with differential GPS elevation, collected on the ground; 

both methods without GCPs. Geo-referencing improved accuracy of canopy height 

measurements (R2 = 0.94) and AGB (R2 = 0.75), compared with non-GPS CHM (canopy 

height, R2 = 0.61 ; AGB, R2 = 0.68) in dense forest. Swinfield et al., (2019) reported that 

the application of GCPs enhanced correlation between LiDAR- and SfM-derived data for 

height (from R2 = 0.51 to 0.67) and ACD (from R2 = 0.53 to 0.68). Therefore, it is 

recommended that future studies that depend on absolute height values in CHMs should 

at least apply geo-referencing using elevation data from an advanced GPS receiver 

(differential GPS), although use of GCPs, with precise coordinates measured by RTK or 

PPK, is optimal. 

4.8.3 Limited visibility of understory in UAV imagery  

One of the biggest challenges using SfM for surveying forests, is the fact that large 

tree-crowns obscure those of understory trees often. In contrast, LiDAR can, to a certain 

extent, penetrate the upper canopies to produce point clouds of underlying objects. (e.g., 

ground, small trees and shrubs, tree trunks, etc.) (Figure 4.19). 

 

Figure 4.19 Examples of UAV derived point clouds in the same forest  

by (A) LiDAR and (B) SfM point cloud (adopted from Sankey et al., 2017) 
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Despite this limitation of RGB photographs and SfM, this study used RGB 

photogrammetry with a consumer-grade UAV, due to its relative availability and 

affordability to local restoration practitioners. Furthermore, to minimize this limitation, 

multiple regression models were applied to estimate tree stocking-density, by adding per 

cent canopy cover as a predictor variable, with the expectation that a higher canopy cover 

would predict greater numbers of obscured small trees. Although this approach generally 

improved prediction of numbers of understory trees (Figure 4.8), it did tend to 

underestimate tree numbers where upper canopy cover was high and overestimated it 

where upper canopy cover was low. 

4.8.4 Non-inclusion of landscape criteria 

The present study focused only on site-factors, however landscape-wide factors also 

influence forest degradation. For example, Elliott et al., (2013) divided the critical 

thresholds, that determine degradation levels, into two categories: site thresholds and 

landscape thresholds (Table 2.1). Their site critical thresholds were: weed cover, natural 

regenerants, and soil exposure (all included in present study.). Landscape-critical 

thresholds were: ⅰ) remnant forest within seed-dispersal distance, ⅱ) populations of seed-

dispersing animals and ⅲ) fire risk (not included in present study). 

Two environmental attributes in landscape (i.e., remnant forest and fire risks) can 

be detected using spaceborne data with ancillary data. For example, the amount and 

distance of remnant forest, likely to act as a source of seed rain reaching restoration sites, 

can be calculated from satellite images. Rapinel et al., (2014) used satellite images with 

thematic ancillary data to classify non-, artificial-, and natural- vegetation. Furthermore, 

various attributes, related to the risk of forest fire, can be estimated from satellite images 

and be integrated. Adab et al., (2013) generated indices of fire risk, combining variables 

of vegetation, topography, and impact from human activities, detected from satellite 

images. 

Automated techniques for detecting viable populations of animal seed-dispersal in 

the landscape include ⅰ) camera traps, ⅱ) thermal cameras on UAVs, and ⅲ) bio acoustic 

monitoring in conjunction with CHMs. Conventional camera traps are static, limited to 

take picture at single viewpoint. Thermal cameras on UAVs cannot detect animals 



 

65 

beneath dense forests. Since birds are the most abundant seed-dispersers during forest 

restoration, the recent development of combining bio-acoustic monitoring— 

understanding population and behavior of animals from triangulating bird songs—with 

CHMs is promising. Wilson et al., (2021) used an array of microphones to map bird 

abundance on CHMs across boreal forest in Canada (Figure 4.20).  

 

Figure 4.20 UAV-derived CHM marked with mourning warblers’ occurrence and 

background location (absence) (adopted from Wilson et al., 2021) 

Whereas, the examples above show that it is feasible to add landscape criteria to 

improve the accuracy of FDIs, the cost of doing so, in terms of time, labor, and equipment 

needed, must also be taken into consideration.  

4.8.5 Application of the FDI in more or less degraded sites 

The sites, used to develop the FDI, represented a wide range of degradation states. 

The most degraded site was a limestone-quarry (LP), although not totally bare substrate. 

The least degraded sites were advanced restoration (BMSM and ML; 8 and 6 years after 

tree-planting), but not yet totally recovered. Therefore, the FDI should be applied with 

caution if used on sites that are more degraded than the former or less degraded than the 

latter, as it would deliver FDI values of <1 or >10 respectively. To prevent such anomalies 

additional sites at the extreme limits of the degradation spectrum would be needed to re-

calibrate the index. In addition, adding sites to fill gaps within the spectrum (in this study 

Stage-2 and 4 or Category-Ⅲ (Table 4.6)) may help to develop a more precise FDI. 
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4.8.6 Labor, time and costs for UAV-derived FDI 

Qualitatively, labor, time, and costs for UAV-derived FDI are compared with 

ground surveys for assessing forest-degradation stages in Table 4.7. One of the apparent 

barriers for applying UAVs is the initial cost for purchasing set of gadgets and recruiting 

technicians or developing capacity of current personnel. However, if organizations have 

long term plans for applying UAVs, these initial costs are spread over many projects. 

Another issue of is complicated data processing. This could be overcome in the future by 

developing automated platform. 

Table 4.7 Consumption comparison between ground survey and UAV-derived FDI 

  

Cost type 
Ground Survey UAV-derived FDI 

per each project (approximately 0.5 – 3.0 hectare) 

Setup 

Training 
- Simple technique  

- Short training 

- High-end technique 

- Period of training  

Gadgets 

- Cheaper  

- ex) tape measure, laser 

range finder 

- Expensive 

- ex) craft, controller, tablet or 

mobile device, extra batteries 

Data 

acquisition 

(Field) 

Time - A whole daytime  - Few hours 

Labor 
(Salary, food) 

- 3 - 4 teams × 2 - 4 members 

- More expense  

- 1 team × 3 members 

- Less expense  

Weather 

limitation 

- Less sensitive 

- Affecting collectors’ safety 

- by severely bad weather,  

- ex) Heavy rain and storm  

- More sensitive 

- Affecting gadgets’ applicability 

- by slightly bad weather,  

- ex) Light rain, fog, and strong 

wind. 

Data 

processing 

(Lab) 

Technique 

- Simple software 

- ex) spreadsheet (MS excel)  

- Advanced software  

- ex) WebODM, Image-J, and 

QGIS, etc. 
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CHAPTER 5 

Conclusion 

This project was a first attempt to develop an index of forest degradation based on 

UAV-derived data. It aimed to find practical and accurate solutions using UAVs, to 

replace conventional time -consuming and labor-intensive ground surveys, to help guide 

restoration projects. The study specifically focused on the development of affordable 

photo-grammetric techniques, using RGB photography and open-source software, rather 

than more expensive options (e.g., LiDAR, and hyperspectral data). The first objective 

was to detect correlations between UAV-derived data, and ground surveyed data. This 

was achieved for four out of the six variables tested; tree stocking-density, per cent 

canopy cover, per cent ground vegetation and per cent exposed soil + rock.  

The second objective was to develop a forest-degradation index (FDI), based on 

such correlations. This was achieved with three additional procedures: ⅰ) removal of 

intercorrelated variables, ⅱ) normalizing the measured values, ⅲ) weighting each 

criterion. The result was an FDI ranging from 0 to 10, which ranked the study sites in 

logical order, from the least to the most degraded, and quantified degradation levels fairly 

intuitively. 

However, the FDI, developed in this study, could not be used to determine the fine 

details of restorative interventions (e.g., planning number of trees, to be planted), which 

were better determined directly from single variables, sometimes from the ground survey 

and sometimes from UAV-derived data. Furthermore, it would be dubious to use the FDI 

to determine restoration strategy (e.g., no-intervention, protection, assisted natural 

regeneration, framework species method, maximum-diverse species method, and nurse 

plantation methods), since it is not yet precise enough. This may have been due to 

fundamental differences between FDIs and discrete degradation stages. FDIs integrate 

several criteria into a single number, which is easily understood. However, it can also
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obscure the distinctions (tipping points) between degradation stages, which have 

conventionally been used to determine restoration strategies. This may help to explain 

why the FDI degradation categories, in this study, did not match the conventional 

degradation stages (1-5). Also contributing to the explanation may be i) the division of 

the FDI into 5 arbitrary categories (five equal divisions of 2) and ii) the exclusion of 

landscape criteria. Addressing these issues will be essential for the development of more 

workable FDIs in the future. Until these issues are resolved, a hybrid system, combining 

individual variables (from ground surveys and/or UAV data), with the integrated UAV-

derived FDIs may be the best solution for planning restoration strategies.
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APPENDIX A 

Experts’ evaluation of weighting drone-derived indicators for Forest-Degradation Index 

 

Experts’ evaluation of weighting drone-derived indicators  

for Forest Degradation Index 

Kyuho Lee (Environmental Science Program, Chiang Mai University) 

 

This research is developing a Forest Degradation Index, using values of various variable that can be derived from the drone-images. Some variables may be more important at 

determine degree of forest degradation than others. So, I would value your expert opinion on how much weight to assign to each of the drone-derived variables. Thank you for 

participation in the survey. 

The variables are: 

Indicator 1. Tree Density. 

Number of trees per hectare (taller than 2m) 

Indicator 2. % Crown Cover 

Percentage of the entire site covered by tree crowns 

Indicator 3. Mean height of trees 

Mean height of trees across the entire site (taller than 2 m)  

Indicator 4. % Exposed soil 

Percentage of the entire site showing exposed soil and/or rocks (detected by color threshold of pixels in photographs) 

Indicator 5. % Ground vegetation and weeds 

Percentage of the entire site covered by ground vegetation and weeds (detected by color threshold of pixels in photographs) 

Indicator 6. Derived Aboveground Carbon Density (MgC/ha) 

Estimated aboveground carbon density per hectare, calculated by allometric equations from mean height of trees and %Crown cover 

 

Instructions 

• For each of the following pairs of variables, please select the one you consider to be more sensitive to changes in level of forest degradation i.e. the one 

that would change the most if the site became more or less degraded. 

• Please select only one variable in each pair (each row) 

• If you find it impossible to decide, or both variables are equally sensitive to changes in forest degradation level, please tick “Equal 1”  

• If you decide one variable is more sensitive than the other one please indicate the degree of sensitivity on a scale of 2 (slightly more sensitive) to 9 

(extremely more sensitive)  

• If you are unsure of any other matters concerning this assessment, please contact Kyuho Lee(paulestlee@gmail.com). 
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APPENDIX B 

Orthophotos presented with DEMs (i.e., DSM, DTM, and CHM) 

1. BMSM 
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2. ML 
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3. BPK 
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4. BMM 
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5. LP 
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APPENDIX C 

Estimating plot points using stadia method and comparisons with GPS 

detected points in orthophotos 

1. BMSM 
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2. ML 
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3. BPK 
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