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Oil palm monocultures are highly productive, but there are widespread negative impacts
on biodiversity and ecosystem functions. Some of these negative impacts might be
mitigated by mixed-species tree interplanting to create agroforestry systems, but there is
little experience with the performance of trees planted in oil palm plantations. We studied
a biodiversity enrichment experiment in the lowlands of Sumatra that was established in
a 6- to 12-year-old oil palm plantation by planting six tree species in different mixtures on
48 plots. Three years after tree planting, canopy cover was assessed by drone-based
photogrammetry using the structure-from-motion technique. Drone-derived canopy
cover estimates were highly correlated with traditional ground-based hemispherical
photography along the equality line, indicating the usefulness and comparability of the
approach. Canopy cover was further partitioned between oil palm and tree canopies.
Thinning of oil palms before tree planting created a more open and heterogeneous
canopy cover. Oil palm canopy cover was then extracted at the level of oil palms
and individual trees and combined with ground-based mortality assessment for all
3,819 planted trees. For three tree species (Archidendron pauciflorum, Durio zibethinus,
and Shorea leprosula), the probability of mortality during the year of the study was
dependent on the amount of oil palm canopy cover. We regard the drone-based method
for deriving and partitioning spatially explicit information as a promising way for many
questions addressing canopy cover in ecological applications and the management of
agroforestry systems.

Keywords: agroforestry, photogrammetry, structure from motion, SfM, Sumatra, Indonesia, unmanned aerial

vehicle, UAV

INTRODUCTION

The area of oil palm (Elaeis guineensis) cultivation has strongly increased over the past decades
(FAO, 2016; Vijay et al., 2016), and its cultivation generates high economic returns (Rist et al.,
2010; Clough et al., 2016; Euler et al., 2016). In conventional plantations, oil palm is usually grown
in monocultures (Azhar et al., 2017). In comparison with other land use systems, and in particular
with forests, such plantations present severely reduced biodiversity and impaired ecosystem
functions (Foster et al., 2011; Barnes et al., 2014; Drescher et al., 2016; Dislich et al., 2017).
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Agroforestry systems that combine agricultural crops and trees
often harbor higher biodiversity and provide more diverse
ecosystem functions than mono-agricultural land uses (Bhagwat
et al., 2008; Jose, 2012; Tscharntke et al., 2012; Barrios et al., 2017;
Ashraf et al., 2018). Including agroforestry zones and also forest
reserves in oil palm-dominated landscapes has been proposed as
a way to better balance economic and ecologicalg needs (Koh
et al., 2009). However, there is very little experience with the
management of oil palm agroforestry.

Planting multiple native tree species into existing oil palm
plantations may be one option for the establishment of such
agroforestry systems (Teuscher et al., 2016). Mature oil palms
possess a height advantage and would likely be less affected
by competition from planted trees (Gérard et al., 2017). The
trees, thus, need to cope with the light conditions beneath
the oil palm canopy, which, however, could be influenced
by thinning. In the evaluation of planted tree performance,
mortality is a central variable, but light requirements differ
between tree species (Davidson et al., 2002). A heterogeneous
oil palm canopy cover may offer varied light conditions that
may meet the light requirements of different species. So
far, knowledge on species-specific site matching under such
conditions is limited.

Canopy cover of oil palms is usually strongly related to the
height of the oil palm stand, and this has been used to predict
aboveground carbon (Nunes et al., 2017) and animal abundance
of the oil palm plantation (Konopik et al., 2014). In the context
of an oil palm agroforest, dense canopy cover of oil palm could
reduce the light intensity received by understory trees passing
through canopy layers (Prastyaningsih and Azwin, 2017). For
an adequate assessment of oil palm canopy cover, ground-based
methods such as a Cajanus sighting tube and line canopy edges
intersect by tape-measures could be used (Jennings et al., 1999;
Korhonen et al., 2006; Ma et al., 2017). Other well-established
methods include measurements of leaf area index, e.g., with
instruments like the LAI-2000 plant canopy analyzer (Awal
and Wan Ishak, 2008), and hemispherical photography with
fisheye lens camera (Awal et al., 2010; Mailly, 2017). However,
these ground-based methods are usually time-consuming or
impractical over the large area of an oil palm plantation.

Drone-based surveys of canopy cover offer new opportunities
and are capable of producing results from multiplot assessment
(Shin et al., 2018). Sensors may include light detection
and ranging (LiDAR) techniques (Guo et al., 2017) or
multispectral imaging capturing red, green, and blue (RGB)
spectral information (Nevalainen et al., 2017). RGB images are
useful to estimate vegetation canopy cover from a canopy height
model (CHM) (Zhang et al., 2016) and for image classification
through a photogrammetric approach using the structure-from-
motion (SfM) technique (Torres-Sánchez et al., 2014; Chianucci
et al., 2016; Banu et al., 2017; Ivosevic et al., 2017). Based
on the segmentation method, using a normalized difference
vegetation index and CHM, a 10-m resolution of a canopy cover
map could be produced (Shin et al., 2018). LiDAR processing
workflows, in conjunction with SfM point clouds derived from
RGB images, should be sufficient to generate a canopy cover
map (Wallace et al., 2016).

The present study was conducted in an experimental oil
palm agroforest in the lowlands of Sumatra, Indonesia, where
oil palm monocultures have expanded rapidly over the last
decades (Drescher et al., 2016). Within such a monocultural
landscape, a biodiversity enrichment experiment (EFForTS-BEE)
was established in 2013 by planting six native tree species within
6- to 12-year-old oil palm stands, usually after thinning oil
palms in the planting area (Teuscher et al., 2016). In the first
years of the experiment, initial results of the thinning oil palm
experiment showed that the net oil palm yield at plot level did not
change or even increased and that tree planting did not impair
oil palm yield (Gérard et al., 2017). In contrast, tree growth
was negatively affected by the proximity to oil palms (Zemp
et al., unpublished data). In 2016, we applied a drone-based
photogrammetric approach to the study area, using a low-flying
octocopter equipped with an RGB camera, in order to analyze
the canopy cover. The main objectives were (1) to generate high-
resolution maps of canopy cover, (2) to partition the canopy into
oil palm and tree components, and (3) to apply the methodology
to compare oil palm canopy conditions of thinned and non-
thinned plots as well as to analyze the effect of oil palm canopy
cover on tree mortality. We expect that such a drone-based
approach offers a new way of analyzing the canopy cover in
agroforestry systems.

MATERIALS AND METHODS

Study Site
The study was conducted in the lowlands of Jambi in Sumatra,
Indonesia, on the land of the company PT. Humusindo Makmur
Sejati (01.95◦S and 103.25◦E). The mean annual precipitation
in the region is 2,235 mm/annum, and the mean annual
temperature is 26.7◦C (Drescher et al., 2016). The main soil
type is loamy Acrisol (Allen et al., 2015), and the average
altitude at the study site is 47m above sea level (a.s.l.) Teuscher
et al., 2016). In 2013, the biodiversity enrichment experiment
(EFForTS-BEE) was established in 6- to 12-year-old oil palm
plantations with a mean palm density of 143 palms per hectare
(Teuscher et al., 2016). The experiment comprises 56 plots
distributed over 150 ha. Trees were planted in 48 plots of
variable sizes (25, 100, 400, and 1,600 m2). Before planting,
oil palm stand density was thinned by 40%, excluding plots of
25 m2 area that remained unthinned (Teuscher et al., 2016).
Six native multipurpose tree species were planted: Archidendron
pauciflorum, Durio zibethinus, Dyera polyphylla, Parkia speciosa,
Peronema canescens, and Shorea leprosula (Table 1). Trees
were planted at a distance of 2m by 2m and in different
biodiversity levels of one, two, three, and six species per plot
(Supplementary Table 1). At the time of the study, the average
height of the oil palmmeristems was 536 cm, and the average tree
height per species ranged from 88 cm in D. polyphylla to 403 cm
in P. canescens.

Drone Missions and Photography
From September to October 2016, the 56 plots were assessed
with an octocopter drone (MikroKopter OktoXL; Mikrokopter,
Inc., Germany) equipped with an RGB camera (Nikon D5100,
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TABLE 1 | Planted tree species and some main ecological characteristics and purpose of uses.

Tree species Family Name in Bahasa

Indonesia

Main use Light characteristics at early life stage

Archidendron pauciflorum Fabaceae Jengkol Food, edible seed Light demanding (Aumeeruddy, 1994)

Durio zibethinus Malvaceae Durian Food, edible fruit Shade tolerant (Harja et al., 2012; Nguyen et al., 2014)

Dyera polyphylla Apocynaceae Jelutung Latex and wood Pioneer, light demanding (Graham et al., 2017)

Parkia speciosa Fabaceae Petai Food, edible seed Pioneer, light demanding (Lee et al., 2002; Orwa et al., 2009)

Peronema canescens Lamiaceae Sungkai Wood Pioneer, light demanding (Lawrence, 2001)

Shorea leprosula Dipterocarpaceae Meranti Wood Gap opportunist (Ådjers et al., 1995) and light demanding
(Bebber et al., 2002)

lens AF-S DX NIKKOR 35mm; Nikon, Japan). The camera
was mounted on a gimbal stabilized platform (MK HiSight
SLR1; Mikrokopter, Inc., Germany). The optical parameters,
such as white balance and focus, were set as automatic mode
with an image resolution of 4,928 × 3,624 pixels. The software
Mikrokopter-Tool (version 2.14b) was used for planning the
drone flight patterns. All missions took place at an altitude
of 35 to 40m above ground, i.e., ∼25m above the canopies,
and were implemented in automatic waypoint mode with a
velocity of 2m per second and a camera shutter interval of 1
per second in automatic trigger mode. All images were captured
with 70% overlap (end and forward). The drone was set to
follow two different flight patterns: one circular and one grid
pathway. Two circular flights were conducted with a difference
in diameter of 10m; the radius varied between 26 and 40m,
with the plot center as the central point (Supplementary Figure 1

and Supplementary Table 2). Within the circular pathway, the
camera was automatically pointed 45◦ from the nadir angle to
the plot center. After completing the circular pathway, the drone
automatically flew in the grid pathway, and the camera angle was
set to the nadir angle (Supplementary Figure 1). After landing,
all recorded images were quality checked, and unfocused images
were deleted. Flight-geo data (GPX-Log files) were processed
in the GPX Viewer software (version 0.66) and exported as
compatible photo-log files with drone images.

Raster Datasets and Canopy Cover
Generation
The Agisoft Photoscan Professional software (version 1.2.6)
was used for orthophoto generation, geo-referencing, and point
cloud construction through the SfM photogrammetric approach.
In each plot, images with their corresponding photo-log file
were processed following standardized steps [including image
alignment, building dense point clouds, digital surface model
(DSM), and orthophoto generation]. The ground control points
were used to measure the accuracy of the orthophoto by geo-
referencing (Supplementary Table 2). Subsequently, the RGB
orthophoto and DSM were exported in the geo-TIFF (Tagged
Image File Format), whereas the SfM point clouds were exported
in the LASer (LAS) format (Agisoft, 2016). This SfM technique
provided RGB point clouds with an average density of 2,750
points per m2 (standard deviation, SD±1,320).

The LiDAR360 software (version 2.1, GreenValley
International lnc, 2018) was used to compute canopy cover
metrics. We derived canopy cover from SfM point clouds. In
order to obtain the canopy cover of each plot, we first classified
SfM point clouds as “ground” (class 2) and “never-classified”
(class 0) with the Classify Ground tool. The never-classified
points were expressed as vegetation (Mathews and Jensen, 2013).
Then, we used the ground points to generate a digital terrain
model (DTM) by combining building size, maximum terrain,
iteration angle, and distance. After that, all the classified point
clouds were normalized by DTM. Furthermore, canopy cover
was computed from the normalized point clouds at 1-m height
threshold to distinguish vegetation parts from ground areas
in the package Forest Stat as Equation 1. Finally, a CHM was
resampled by subtracting different elevations (m) between DSM
and DTM. All raster file outputs were saved in TIFF format
with 1-m spatial resolution. We followed these workflows for all
56 plots. We calculated canopy cover with the equation of the
LiDAR first return point clouds as:

Canopy cover = N vegetation/ N total (1)

with N vegetation = number of point clouds intersecting the
vegetation above the height threshold, and N total = total number
of point clouds (Morsdorf et al., 2006; Ma et al., 2017).

Hemispherical Photography
Ground-based hemispherical photographs were captured at
the center of the 56 plots (Figure 1A). Coordinates of plot
centers were taken by the Garmin GPS (Global Positioning
System) device (GPSmap 62; Garmin International, Inc., USA).
The circular fisheye lens (SIGMA 4.5mm F2.8 EX DC HSM,
field of view 180◦) and camera (Nikon D5100) were set on a
tripod at 1.2-m height, with the lens pointing exactly zenith.
The flash socket was always positioned to the north using a
compass (Beaudet and Messier, 2002). To avoid overestimation
of the canopy gap fraction caused by overexposure from auto-
exposed photographs, we progressively reduced exposure values
incrementally by 0.3 until no overexposed pixels presented in
the camera screen (Beckschäfer et al., 2013). The selected non-
overexposed photographs were processed in Can_Eye software
(version 6.47) to identify the vegetation cover fraction in vertical
projection as canopy cover (Weiss and Baret, 2016). The standard
canopy cover was determined using a two-classes method

Frontiers in Forests and Global Change | www.frontiersin.org 3 April 2019 | Volume 2 | Article 12

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Khokthong et al. Drone-Assessed Oil Palm Canopy Cover

FIGURE 1 | Overview of the biodiversity enrichment experiment
(EFForTS-BEE) experimental plot number 23 (six planted tree species,
40m × 40m): (A) RGB orthophoto map (5-mm pixel size) overlaid by oil palm
canopy segmentations and referenced oil palm. The plot center is shown,
where the ground-based hemispherical photograph was taken. (B) Oil palm
canopy cover at 1-m resolution; higher values indicate more close canopy,
while lower values indicate more open canopy. (C) Extraction of oil palm
canopy cover at single-tree level with buffers (2-m diameter).

(vegetation and sky without mixed pixels) with zenith angles 60◦

(Weiss and Baret, 2016).

Validation of Canopy Cover
Drone-derived vegetation canopy cover in each plot was
compared with its respective ground-based hemispherical
photograph. We considered that tree and oil palm
height could affect the size of view of the fisheye
images. The average tree and oil palm heights from
the CHMs differed (Supplementary Table 2). Thus, we

FIGURE 2 | Drone-derived canopy cover compared to ground-based
hemispherical photography at plot center (N = 56 plots) with a correlation
coefficient (R) = 0.94, RMSE = 10.83%. The equality line (black dashed line)
indicates 1:1 relationship with R² = 0.84, p < 0.01.

estimated the radius (r) of the fisheye images from
average-height CHM with buffer in 10-m diameter,
θ = zenith angles 60◦ as Equation 2 (Riaño et al., 2004;
Leblanc and Fournier, 2017).

r = tanθ × average CHM in 10-m diameter buffer (2)

In each plot, the circular buffer area (πr2) of drone-derived
canopy cover was calculated. We assumed that sampling size
between the canopy cover from the drone and hemispherical
photographs in each plot were equal. The weighted average
was used for extracting pixel values of drone-derived canopy
cover (Fieber et al., 2015). The association of drone-derived
canopy cover estimates with canopy cover estimates from
hemispherical photography was tested using the Pearson
correlation coefficient (R) and comparing the estimates to the
equality line using coefficient of determination (R2) (Figure 2).
Finally, the significant difference between means of canopy
cover from two methods was evaluated using the paired two-
sample t-test. All raster calculations were done in R program
(R Development Core Team, 2016), with the libraries raster
(Hijmans, 2016), and rgdal (Bivand et al., 2017).

Oil Palm Canopy Segmentation
In each plot, CHM at 1-m spatial resolution was used for oil palm
canopy segmentation.We followed the localmaximum algorithm
with a fixed window size. First, the CHM was smoothed by
a Gaussian filter with smoothing-window size at 3 × 3 pixels
using the FindTreesCHM function in the library rLiDAR (Silva
et al., 2017), using the library raster (Hijmans, 2016), and rgeos
(Bivand and Rundel, 2017). Then, a fixed window size at 5 × 5
pixels, a specified height threshold at 1m, and a maximum crown
radius at 12m were applied in order to retrieve automatically
delineated crown polygons with the function ForestCAS in the
library rLiDAR (Silva et al., 2017). All steps were conducted in R
program (R Development Core Team, 2016).
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FIGURE 3 | Distribution of oil palm canopy cover in thinned and non-thinned
plots where trees were planted (N thinned = 24,870 pixels and
N non−thinned = 307 pixels, in 48 plots).

We partitioned oil palm canopy from other tree canopies
by manually selecting the oil palm crown polygons within
the RGB orthomosaic overlay, following semi-individual tree-
crown approach (Breidenbach et al., 2010). All selected polygons
were merged and categorized as segmented oil palm canopy
(Figure 1A), and the other polygons were categorized as tree
canopy and open area. The accuracy was assessed using
Equations 3–5 after matching objects with manual-referenced oil
palm polygons using the Intersect tool in ArcGIS (version 10.4)
(Clinton et al., 2010; Kumar, 2012). Moreover, oil palm canopy
covers from thinned and non-thinned plots were compared by
quantifying the frequency of pixels within an interval of 20% for
oil palm canopy cover classes (0–20, 20–40, 40–60, 60–80, and
80–100%; Figure 3).

Over segmentation = 1−
area( referenced oil palm

⋂

segmented oil palm)

area (referenced oil palm)
(3)

Under segmentation = 1−
area

(

referenced oil palm
⋂

segmented oil palm
)

area
(

segmented oil palm
) (4)

Error (%) =
√

over segmentation2 + under segmentation2
√
2

× 100 (5)

Oil Palm Canopy Cover Extraction at
Individual Tree Level
We manually co-registered the coordinates of living trees from
2016 within their corresponding RGB orthophoto. For each
living tree, we systematically designed circular buffers of 2-m
diameter, consistent with the initial distances between planted
trees, as sampling area for oil palm canopy cover extraction
(Figure 1C). The mean value of oil palm canopy cover was
quantified for each living tree. Due to the shape of the circular
buffers, raster cells on edges were not totally covered by polygons;
a weighted function was then used to calculate the mean value
proportionally (Fieber et al., 2015). Data processing was done
in the R program (R Development Core Team, 2016) in library
raster (Hijmans, 2016) and rgdal (Bivand et al., 2017).

Tree Mortality Assessments
Living trees were recorded in the 48 plots by annual field
inventory in January 2016, and again in January 2017.
Mortality was monitored by bark scratching and visual
inspection. Erroneous mortality diagnostics revealed from the
inventory conducted in 2018 were corrected (30 trees in
total). The total number of living trees in 2016 was 3,819
(Supplementary Tables 1, 3), and number of trees that died
between 2016 and 2017 was 507 (Supplementary Table 1). The
percentage of 1-year species mortality (2016–2017) in each oil
palm canopy cover class “s” was calculated as Equation 6.

Mortality s (%) =
N_dead s

N_alive s + N_dead s
× 100 (6)

where “s” indicates canopy cover class, N_dead= number of trees
that died, and N_alive = number of trees that survived between
2016 and 2017.

The dependency of tree mortality on oil palm canopy cover
class could not be tested using a standard contingency test
because tree mortality in many classes was too low (see Figure 4).
We, thus, used Fisher’s exact and pairwise tests to address the
dependency between oil palm canopy cover class and the number
of trees that died and survived between 2016 and 2017. The null
hypothesis is that the proportion of trees that died and survived
is independent of oil palm canopy cover class.

RESULTS

Canopy Cover Estimation at Plot Level
At the plot center, canopy cover derived from drone-based point
clouds ranged from 0 to 99% across the 56 experimental plots
(Figure 2). Drone-derived canopy cover estimates (y) were highly
correlated with ground-based hemispherical photography (x)
with R = 0.94 (p < 0.01). The equality line (y = x) fitted well
to the data (R2 = 0.84, p < 0.01), and no significant differences
were found between the two estimates (t-value=−0.05, p> 0.05)
with root mean square error (RMSE) = 10.83%. However, there
was a deviation between low to mid ranges of canopy cover (20
to 50%), where the drone-based method estimated higher canopy
cover than the ground-based estimation (Figure 2).

Based on drone estimates with a resolution scale of 1m
covering 48 agroforestry plots, the mean vegetation canopy cover
was 70% (SD ±11%). The canopy cover from the oil palms was
56% (SD±17%), and the canopy cover from the planted trees was
15% (SD ±13%). The accuracy of oil palm canopy segmentation
is estimated to be 91% (SD ±5%). The frequency of pixels across
canopy cover classes followed a U-shape distribution in both
thinned and non-thinned plots (Figure 3). Pixels with 0 to 20%
of oil palm canopy cover were twice more frequent in thinned
plots than in non-thinned plots (Figure 3). On the other hand,
pixels with dense oil palm canopy cover 80–100% were 37% less
frequent in non-thinned plots than in thinned plots (Figure 3).

Oil Palm Canopy Cover Related to Tree
Mortality
Field-based inventory indicated that the overall mortality
of the six tree species between 2016 and 2017 was 13%

Frontiers in Forests and Global Change | www.frontiersin.org 5 April 2019 | Volume 2 | Article 12

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Khokthong et al. Drone-Assessed Oil Palm Canopy Cover

FIGURE 4 | Tree mortality (% yr −1) between January 2016 and January 2017 within oil palm canopy cover. “*” indicates tree species with proportions of trees that
died and survived between 2016 and 2017 depending on oil palm canopy cover class (two-tailed p < 0.05, Fisher’s exact test). The numbers of trees that died
(N_dead) and survived (N_alive) are indicated above the bars (N_dead:N_alive), and the letters represent differences among oil palm canopy cover classes (p < 0.05,
pairwise test of independence). The total number of living trees in 2016 and the number of dead trees in 2017 were 3,819 and 507, respectively
(Supplementary Table 4).

but differed significantly among species. D. zibethinus and
S. leprosula had high mortality rates (39 and 47% yr−1,
respectively), while A. pauciflorum, D. polyphylla, P. speciosa,
and P. canescens had low mortality rates (<10% yr−1;
Supplementary Table 3).

The proportion of trees that died and survived for the three
tree species, A. pauciflorum, D. zibethinus, and S. leprosula,

was dependent on oil palm canopy cover class (Figure 4),
whereas no significant dependency was detected for the other
three tree species (Fisher’s exact test, two-tailed p > 0.05). A.
pauciflorum and S. leprosula presented higher mortality rates
with increasing oil palm canopy cover, while D. zibethinus
presented decreasing mortality rates with increasing oil palm
canopy cover (Figure 4).
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DISCUSSION

We generated canopy cover maps at a high spatial resolution
in oil palm agroforests using drone-based photogrammetry
(Figure 1B), partitioned canopy cover into oil palms and trees,
and analyzed the relationship between oil palm canopy cover and
tree mortality.

We integrated different flight patterns and camera angles
to generate high-density point clouds following a well-
documented photogrammetry procedure (Cunliffe et al.,
2016; Vacca et al., 2017). The employed SfM technique
resulted in a very high density of photogrammetric
point clouds (mean = 2,750 points per m2). In a
previous study observing canopy cover with LiDAR point
clouds, the density of 10 points per m2 already yielded
reasonable results when compared with ground-based
measurements using a Cajanus sighting tube (Ma et al.,
2017). Therefore, it is clear that point cloud density from
the SfM technique is high enough to derive reliable canopy
cover estimates.

We found a high correlation between drone-derived canopy
cover and ground-based hemispherical photography. Despite
the high correlation, drone-derived canopy cover estimates
were higher than ground-based estimates at 20 to 50% of
canopy cover (Figure 2). The SfM point clouds resulted in
overestimated canopy cover compared to the LiDAR point
clouds estimates probably due to limited penetration ability;
however, mean canopy cover derived from the two different
methods did not differ significantly (99% confidence level)
in a previous study (Jayathunga et al., 2018) and in our
own. A similar deviation was observed by Chianucci et al.
(2016), who found that canopy cover from drone-based RGB
image classification was higher than ground-based photography
estimation. We assume that small canopy gaps might be
undetectable from SfM point clouds, as it was also the
case in canopy analyses from LiDAR point clouds (Vaccari
et al., 2013). A single picture of the aerial photography
may potentially have similar resolution as the ground-based
pictures, but the SfM approach includes numerous pictures from
different angles with a certain overlap. Such methodological
differences might explain the observed difference in estimations
at low to intermediate canopy cover. Nevertheless, the high
correlation between the SfM technique and the ground-based
hemispherical photography strongly suggests comparability of
our approach.

Based on semi-individual tree-crown approach (Breidenbach
et al., 2010), the oil palm canopy segmentation is a crucial step
to partition the canopy cover into oil palms by overlaying oil
palm crown polygons with RGB orthophotos. This procedure
resulted in useful and precise data but leaves room for
further optimization, because using only the automatic crown
segmentation of the CHM did not always differentiate oil
palm canopy from trees. Furthermore, in order to improve
the accuracy of crown segmentation, different window sizes
relative to image resolutions and varying tree-crown sizes
could be tested (Wulder et al., 2000; Silva et al., 2016;
Mohan et al., 2017). One advantage of our method was

that we could retrieve oil palm canopy cover at the level
of individual trees using their spatial coordinates, and this
was possible even when planted trees were invisible from
RGB images because they grew under neighbor trees and oil
palm canopies.

An analysis of our map of oil palm canopy cover suggests
that thinning oil palms created more variable canopy cover
conditions. Specifically, thinned plots presented twice as many
pixels in open areas (0 to 20% oil palm canopy cover class) and
37% less pixels in shaded areas (80 to 100% oil palm canopy
cover) compared to non-thinned plots.

The probability of mortality rates of A. pauciflorum, D.
zibethinus, and S. leprosula depended on the amount of oil
palm canopy cover (Figure 4). The relationship between oil palm
canopy cover and mortality can be related to light requirements
of each species (Table 1); however, a clear relationship between
oil palm shading and tree mortality was not present for
other tree species. Long-term monitoring of tree mortality
may be required to elucidate relationship for these remaining
species. Moreover, further analysis of other potentially important
control factors affecting mortality should be conducted. For
example, planted trees might have also suffered from the
extreme drought period associated with the El Niño event in
2015 (Meijide et al., 2018), even though the drought ended
several months before our study period (Nieuwstadt and Sheil,
2005).

Oil palm companies have only begun to utilize remote
sensing monitoring technology for developing more sustainable
management schemes (Chong et al., 2017). Our drone-
based methods efficiently differentiated oil palm from
tree canopies and clearly depicted the canopy structure of
dominant oil palms. Furthermore, we were able to show with
our method that thinning created heterogeneous oil palm
canopy cover and that oil palm canopy conditions partly
influenced mortality of some tree species in the biodiversity
enrichment experiment.

CONCLUSION

Drone-based photogrammetry and subsequent partitioning of
dominant oil palm canopies present advantages in canopy
cover analyses of oil palm agroforestry. In the case of
transforming oil palm monocultures into agroforestry systems,
drone-derived canopy cover can be utilized to address many
other questions with respect to agroforestry system management
and ecological study.
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