IDENTIFYING AND LOCATING TREES OF FRAMEWORK SPECIES USING PHOTOGRAPHY FROM AN UNMANNED AERIAL VEHICLE (UAV)

KRISHNA BAHADUR RAI

MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

GRADUATE SCHOOL CHIANG MAI UNIVERSITY MAY 2019

IDENTIFYING AND LOCATING TREES OF FRAME WORK SPECIES USING PHOTOGRAPHY FROM AN UNMANNED AERIAL VEHICLE (UAV)

KRISHNA BAHADUR RAI

MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

GRADUATE SCHOOL CHIANG MAI UNIVERSITY MAY 2019

IDENTIFYING AND LOCATING TREES OF FRAMEWORK SPECIES USING PHOTOGRAPHY FROM AN UNMANNED AERIAL VEHICLE (UAV)

KRISHNA BAHADUR RAI

A THESIS SUBMITTED TO CHIANG MAI UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

GRAUDATE SCHOOL, CHIANG MAI UNIVERSITY MAY 2019

IDENTIFYING AND LOCATING TREES OF FRAMEWORK SPECIES USING PHOTOGRAPHY FROM AN UNMANNED AERIAL VEHICLE (UAV)

KRISHNA BAHADUR RAI

THIS THESIS HAS BEEN APPROVED TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

Examination Committee:

Advisor:

.....Chairman (Assoc. Prof. Dr. Kriangsak Sri-ngeryuang)

(Dr. Stephen Elliott)

.....Member

(Dr. Stephen Elliott)

.....Member

(Asst. Prof. Dr. Pimonrat Tiansawat)

17 May 2019

Copyright © Chiang Mai University

This book is dedicated to my dear beloved son Jeremy Rai

ACKNOWLEDGEMENTS

I thank the Royal Government of Bhutan (RGOB) and Thailand International Cooperation Agency (TICA) for awarding scholarship to purse post graduate studies at Chiang Mai University, Thailand. In addition, I thank the Forest Restoration Research, Unit, Chiang Mai University (FORRU-CMU) for a small project research grant. I express my heartfelt gratitude to my thesis advisor Dr. Stephen Elliott, FORRU-CMU for his continued and relentless support during the course of my study. Special thanks to FORRU-CMU's staff for their kind support at the field and CMU Herbarium for their support. A special mention to acknowledge and thank Ms. Panipak Saetan and Ms. Nout Kanyapim, who helped in the field for multiple times, despite of their busy schedules. I also thank the University Studies Abroad Consortium (USAC), CMU students for assisting me to validate my thesis results and Mr. Noi from Lucky Car Rent for his excellent transportation services.

Krishna Bahadur Rai

หัวข้อวิทยานิพนธ์	การระบุชนิดและตำแหน่งของต้นไม้ของพรรณไม้โครงสร้างโดยการใช้ การถ่ายภาพจากอากาศยานไร้คนขับ
ผู้เขียน	นายกฤษณะ บาฮาดูร ไร
ปริญญา	วิทยาศาสตรมหาบัณฑิต(วิทยาศาสตร์สิ่งแวคล้อม)
อาจารย์ที่ปรึกษา	คร. สตีเฟน เอลเลียต

บทคัดย่อ

้ความจำเป็นในการระบุตำแหน่งและชนิดของกล้าไม้ให้มีศักยภาพนั้น ได้กลายเป็นสิ่งที่สำคัญ เพื่อช่วยในการบรรลุเป้าหมายตามปฏิญญาสหประชาชาติว่าด้วยป่าไม้ ณ เมืองนิวยอร์กปี 2557 โดยมี ้วัตถุประสงค์เพื่อคำเนินการฟื้นฟป่าในพื้นที่เสื่อมโทรมขนาด 350 ถ้านเฮกแตร์ ภายในปี 2573 ซึ่งอปสรรคของการจำแนกชนิดของต้นไม้ในป่าเขตร้อนนั้น คือวิสัยทัศน์ของการมองเห็นในระดับ ภากพื้นดิน ดังนั้นจึงจำเป็นต้องมีการสำรวจเหนือพื้นดินโดยอาศัยข้อมูลการสำรวจระยะไกลไม่ว่าจะ เป็น เครื่องบิน คาวเทียม หรือเทคโนโลยีภาพถ่าย เช่น ภาพถ่าย hyperspectral และ LiDAR ้อย่างไรก็ตามเทคนิคการสำรวจโดยวิธีการเหล่านี้มักมีราคาแพงและมีความยากในการเข้าถึง แต่ใน ช่วงไม่กี่ปีที่ผ่านมาได้มีอุปกรณ์ที่เรียกว่าอากาศยานไร้คนขับ (UAV) ซึ่งประกอบด้วยกล้องที่มีความ ละเอียดสูงรวมถึงรากาไม่แพงมากนักดังนั้นงานวิจัยนี้จึงศึกษาโดยการใช้ UAV ในการระบุชนิด และตำแหน่งของต้นไม้ทั้ง 9 ชนิด ได้แก่ หาดหนุน (Artocarpus gomezianus), ก่อหมูดอย (Castanopsis calathiformis), ก่อใบเลื่อม (Castanopsis tribuloides), มะกัก (Choerospondias axillaris), กร่าง (Ficus altissima), มณฑาแดง (Magnolia garrettii), สนสามใบ (Pinus kesiya), นางพญาเสือโคร่ง (Prunus cerasoides) และยมหอม (Toona ciliata) ในพื้นที่ศึกษาบ้านแม่สาใหม่ เขตอุทยานแห่งชาติดอยสุเทพ-ปุย ภาคเหนือของประเทศไทย ซึ่งเป็นพื้นที่ป่าไม้ที่ได้รับการฟื้นฟูโดยใช้ไม้พรรณไม้โครงสร้างเมื่อ โดยหน่วยปฏิบัติการวิจัยการฟื้นฟูป่า (FORRU-CMU) มหาวิทยาลัยเชียงใหม่ ปีก่อน 20 ซึ่งมีพื้นที่ขนาค 0.0064 ตร.กม. มีการเก็บข้อมูลทุก ๆ เดือน จำนวน 8 เดือน โดยใช้ DJI Phantom 4 Pro บินเหนือพื้นดินสูง 50 เมตร มีการวางแผนการบินอัตโนมัติแบบเอกสิทธิ์ของซอฟต์แวร์ Litchi ภาพถ่ายดิจิตอลทางอากาศ (20ล้านพิกเซล) ที่ได้ถูกนำมาใช้ในการพัฒนาคีย์ในแต่ละชนิดของต้นไม้ โดยขึ้นอยู่กับลักษณะของเรือนยอดไม้ ลักษณะของใบและการกรองข้อมูลภาพ จากนั้นทำการทดสอบ คีย์เพื่อตรวจสอบความถูกต้องและความน่าเชื่อถือโดยอาสาสมัคร ผลการศึกษาพบว่ามีความแม่นยำ ในการจำแนกเกิน 50% สำหรับต้นไม้ทั้ง 7 ชนิด และเกิน 70% สำหรับ 4 ชนิด อย่างไรก็ตาม แม้ว่าระบบนี้จะยังไม่สามารถที่จะระบุต้นไม้ได้ทุกชนิดแต่ก็มีประโยชน์สำหรับการระบุตำแหน่งและ ชนิดของต้นไม้ที่เพียงพอสำหรับการเริ่มต้นของโครงการฟื้นฟูป่า

Thesis Title	Identifying and Locating Trees of Framework Species Using
	Photography from an Unmanned Aerial Vehicle (UAV)
Author	Mr. Krishna Bahadur Rai
Degree	Master of Science (Environmental Science)
Advisor	Dr. Stephen Elliott

ABSTRACT

The need to locate and identify potential seed trees has become crucial, if we are to meet ambitious global reforestation targets of UN New York Declaration on Forests, 2014, which aims to restore forest in 350 million ha of degraded land by the year 2030. Tree species identification in tropical forests is hindered by low visibility from the ground. The possibility of viewing trees from above, using remote sensing platforms (planes and satellites) and imaging technologies such as hyperspectral imagery and lidar are being investigated. However, such technologies are very expensive and not readily accessible. In contrast, Unmanned Aerial Vehicle (UAV), with high-resolution cameras, have become a lot more affordable in recent years. Therefore, the research presented here determined if an off-the-shelf UAV could be used to easily identify nine (9) target tree species in dense regenerating forest from above. The study site was at Ban Mae Sa Mai (BMSM), Doi Suthep-Pui National Park, Northern Thailand, where forest had been restored in two plots (0.0064 km² each), by planting framework tree species 20 years previously, by Chiang Mai University's Forest Restoration Research Unit (FORRU-CMU). Digital aerial photographs (20 megapixels) of tree crowns of nine framework tree species (Artocarpus gomezianus Wall. Ex Trecul, Castanoposis calathiformis (Skan) Rehder & E.H. Wilson, Castanopsis tribuloides (Sm.) A.DC., Choerospondias axillaris (Roxb.) B.L. Burtt & A.W. Hill, Ficus altissima Blume, Magnolia garrettii (Craib)V.S. Kumar, Pinus kesiya Royle ex Gordon, Prunus cerasoides Buch, Ham.ex D. Don, Toona ciliata M. Roem) were taken monthly over 8 months, using a DJI Phantom 4 Pro, flown at 50 m above the ground, along an identical autonomous flight plan using Litchi flight planning software. The photographs were used to develop visual species-identification keys, based on crown and leaf characteristics and image filtering. The keys were then tested for reliability in another similarly aged validation plot, using independent volunteer observers. Identification accuracy exceeded 50% for seven of nine target species and 70% for four of the species. Although, the system cannot be relied upon to locate all trees of target species, it is useful for locating enough seed trees to initiate forest restoration projects.

CONTENTS

Page

Acknowledgements	d
Abstract in Thai	e
Abstract in English	g
List of Tables	1
List of Figures	р
List of Equations	S
List of Abbreviations	t
Glossary	u
Chapter 1 Introduction	1
1.1. Literature review	2
1.2. Objectives of the study	7
Chapter 2 Materials and Methodology	8
1. Study Area	8
2. The Framework Species Method	9
3. Methodological Strategy	10
3.1. Mapping and Ground truthing of selected species	10
4. Digital Aerial Photograph Acquisition	13
4.1. Materials Used	13
4.1.1. DJI Phantom 4 Pro	13
4.1.2. LITCHI Application	14
4.2. Photograph Acquisition Procedure	15
4.2.1. Digital Aerial Photographs	15
4.2.2. Flight Plans	16
4.3. Photograph Acquisition	17
5. Weather during the study period	17

6. Development of Dichotomous keys	17
6.1. Materials used	18
6.1.1. MacOS (Macintosh Operating System) Preview Application (app)	18
6.1.2. Image J	18
6.2. Methodology	20
6.2.1. Crown, leaf, Image filtering and phenological keys	20
6.2.2. Description of Crown Keys	20
6.2.3. Description of Leaf keys	23
6.2.4. Image filtering keys	24
6.2.5. Validation of keys	26
6.3. Validation Procedure	26
6.3.1. Pre-validation activities	26
6.3.2. Validation Day activities	26
6.3.3. Data Analysis	28
Chapter 3 Results and Discussion	30
1. Crown Dichotomous keys	30
2. Leaf Dichotomous keys	48
3. Image J filtering keys	65
4. Monthly Tree Species Identification Keys	71
4.1. Artocarpus gomezianus	71
4.2. Castanopsis calathiformis	73
4.3. Castanopsis tribuloides	76
4.4. Choerospondias axillaris	79
4.5. Ficus altissima	81
4.6. Magnolia garrettii	84
4.7. Pinus kesiya	87
4.8. Prunus cerasoides	89
4.9. Toona ciliata	92
5. Results of Tree Species Identification by Photo-interpretation	95
5.1. Overall Tree Species Identification Accuracy	95

5.2. Overall Monthly Tree Species Identification Accuracy	97
5.3. Species-wise Monthly Identification Accuracy	98
Discussion	101
1. Tree Species Identification Accuracy	101
1.1. Tree species with Identification Accuracy of 100%	101
1.2. Tree species with Identification Accuracy of 75% to 95%	101
1.3. Tree species with Identification Accuracy of 50% to 70%	102
1.4. Tree species with Identification Accuracy of 50% and below	102
1.5. Phenology and Identification Accuracy	103
2. Limitation and Challenges	104
2.1. Applicability of approach	104
2.2. Inconsistencies in quality of digital aerial photographs	104
2.3. Image geometric distortion	104
2.4. Topographic variation	105
2.5. Photo-interpreters	105
2.6. Image J	105
2.7. Structural complexity of tree crowns	107
2.8. Automated tree species identification	108
3. Application	108
Chapter 4 Conclusion	110
References	111
Appendices	117
Appendix A- Tree species identification photographs	117
Appendix B- Snapshots of field and validation documents	118
Appendix C- Key Validation Results	119
Appendix D- Validation day photographs	122
Appendix E- Aerial taxonomic keys	123
Appendix F- Statistical Test Results	127
Curriculum vitae	131

LIST OF TABLES

Table 2.1	List of selected tree species for study	12
Table 2.2	Number of tree crowns of target species used to develop keys	12
	(training plot)	
Table 2.3	Properties used for describing tree crowns. Adapted and	20
	modified Trichon & Julien (2006) and	
	Gonzalez-Orozco et. al. (2010)	
Table 2.4	Properties used for describing leaves and their descriptors.	23
	Adapted & modified from Gardner et al. (2007)	
Table 2.5	Target species sample size (no. of trees) and photo-interpreters	27
	involved in validation	
Table 3.1	Key A: Crowns (June 2018). For abbreviations see Table 2.3.	32
Table 3.2	Key A; Crowns (July 2018). For abbreviations see Table 2.3.	34
Table 3.3	Key A; Crowns (August 2018). For abbreviations see	36
	Table 2.3.	
Table 3.4	Key A; Crowns (September 2018). For abbreviations	38
	see Table 2.3	
Table 3.5	Key A; Crowns (October 2018). For abbreviations	40
	see Table 2.3	
Table 3.6	Key A; Crowns (November 2018). For abbreviations	42
	see Table 2.3	
Table 3.7	Key A; Crowns (December 2018). For abbreviations	44
	see Table 2.3	
Table 3.8	Key A; Crowns (January 2019). For abbreviations	46
	see Table 2.3	
Table 3.9	Key B: Leaves (June 2018). For abbreviations see Table 2.4	49
Table 3.10	Key B; Leaves (July 2018). For abbreviations see Table 2.4	51

Table 3.11	Key B; Leaves (August 2018). For abbreviations	53
	see Table 2.4	
Table 3.12	Key B; Leaves (September 2018). For abbreviations	55
	see Table 2.4	
Table 3.13	Key B; Leaves (October 2018). For abbreviations	57
	see Table 2.4	
Table 3.14	Key B; Leaves (November 2018). For abbreviations	59
	see Table 2.4	
Table 3.15	Key B; Leaves (December 2018). For abbreviations	61
	see Table 2.4	
Table 3.16	Key B; Leaves (January 2019). For abbreviations	63
	see Table 2.4	
Table 3.17	Artocarpus gomezianus (June 2018)	71
Table 3.18	Artocarpus gomezianus (July 2018)	71
Table 3.19	Artocarpus gomezianus (August 2018)	71
Table 3.20	Artocarpus gomezianus (September 2018)	72
Table 3.21	Artocarpus gomezianus (October 2018)	72
Table 3.22	Artocarpus gomezianus (November 2018)	72
Table 3.23	Artocarpus gomezianus (December 2018)	73
Table 3.24	Artocarpus gomezianus (January 2018)	73
Table 3.25	Castanopsis calathiformis (June 2018)	73
Table 3.26	Castanopsis calathiformis (July 2018)	74
Table 3.27	Castanopsis calathiformis (August 2018)	74
Table 3.28	Castanopsis calathiformis (September 2018)	74
Table 3.29	Castanopsis calathiformis (October 2018)	75
Table 3.30	Castanopsis calathiformis (November 2018)	75
Table 3.31	Castanopsis calathiformis (December 2018)	75
Table 3.32	Castanopsis calathiformis (January 2019)	76
Table 3.33	Castanopsis tribuloides (June 2018)	76
Table 3.34	Castanopsis tribuloides (July 2018)	76
Table 3.35	Castanopsis tribuloides (August 2018)	77

Table 3.36	Castanopsis tribuloides (September 2018)	77
Table 3.37	Castanopsis tribuloides (October 2018)	77
Table 3.38	Castanopsis tribuloides (November 2018)	78
Table 3.39	Castanopsis tribuloides (December 2018)	78
Table 3.40	Castanopsis tribuloides (January 2019)	78
Table 3.41	Choerospondias axillaris (June 2018)	79
Table 3.42	Choerospondias axillaris (July 2018)	79
Table 3.43	Choerospondias axillaris (August 2018)	79
Table 3.44	Choerospondias axillaris (September 2018)	80
Table 3.45	Choerospondias axillaris (October 2018)	80
Table 3.46	Choerospondias axillaris (November 2018)	80
Table 3.47	Choerospondias axillaris (December 2018)	81
Table 3.48	Choerospondias axillaris (January 2019)	81
Table 3.49	Ficus altissima (June 2018)	81
Table 3.50	Ficus altissima (July 2018)	82
Table 3.51	Ficus altissima (August 2018)	82
Table 3.52	Ficus altissima (September 2018)	82
Table 3.53	Ficus altissima (October 2018)	83
Table 3.54	Ficus altissima (November 2018)	83
Table 3.55	Ficus altissima (December 2018)	83
Table 3.56	Ficus altissima (January 2019)	84
Table 3.57	Magnolia garrettii (June 2018)	84
Table 3.58	Magnolia garrettii (July 2018)	84
Table 3.59	Magnolia garrettii (August 2018)	85
Table 3.60	Magnolia garrettii (September 2018)	85
Table 3.61	Magnolia garrettii (October 2018)	85
Table 3.62	Magnolia garrettii (November 2018)	86
Table 3.63	Magnolia garrettii (December 2018)	86
Table 3.64	Magnolia garrettii (January 2019)	86
Table 3.65	Pinus kesiya (June 2018)	87
Table 3.66	Pinus kesiya (July 2018)	87

Table 3.67	Pinus kesiya (August 2018)	87
Table 3.68	Pinus kesiya (September 2018)	88
Table 3.69	Pinus kesiya (October 2018)	88
Table 3.70	Pinus kesiya (November 2018)	88
Table 3.71	Pinus kesiya (December 2018)	89
Table 3.72	Pinus kesiya (January 2019)	89
Table 3.73	Prunus cerasoides (June 2018)	89
Table 3.74	Prunus cerasoides (July 2018)	90
Table 3.75	Prunus cerasoides (August 2018)	90
Table 3.76	Prunus cerasoides (September 2018)	90
Table 3.77	Prunus cerasoides (October 2018)	91
Table 3.78	Prunus cerasoides (November 2018)	91
Table 3.79	Prunus cerasoides (December 2018)	91
Table 3.80	Prunus cerasoides (January 2019)	92
Table 3.82	Toona ciliata (July 2018)	92
Table 3.83	Toona ciliata (August 2018)	93
Table 3.84	Toona ciliata (September 2018)	93
Table 3.85	Toona ciliata (October 2018)	93
Table 3.86	Toona ciliata (November 2018)	94
Table 3.87	Toona ciliata (December 2018)	94
Table 3.88	Toona ciliata (January 2019)	94
Table 3.89	Chi-Square test results for overall tree species identification	96
	accuracy	
Table 3.90	Correlation between Tree species, % Found,	96
	% Error of Omission and % Error of Commission	
Table 3.91	Chi-Square test results for monthly tree species identification	97
	accuracy	
Table 3.92	Correlation between Months, % Found,	98
	% Error of Omission and % Error of Commission	
Table 3.93	Species-wise Monthly Identification Accuracy	99
Table 3.94	Phenology and Identification Accuracy	103

LIST OF FIGURES

Figure 2.1	Location of study area at Doi Suthep-Pui National Park,	8
	Northern Thailand	
Figure 2.2	How Framework species method works	10
Figure 2.3	Snapshot of marked crowns in macOS Preview App	11
Figure 2.4	DJI Phantom Pro 4 at BMSM Training plot	13
Figure 2.5	Snapshot of LITCHI application	14
Figure 2.6	Snapshot of camera ISO setting	15
Figure 2.7	Flight plan of validation plot	16
Figure 2.8	Pictures of weather conditions at study area	17
	during wet season	
Figure 2.9	Snapshot of macOS Preview app viewer	18
Figure 2.10	Snapshot of Image J software	19
Figure 2.11	Graphical representation of vertical tree crown shape	22
	properties (A) flat, (B) slightly rounded, (C) more rounded,	
	(D) hemispherical and (E) pointed.	
Figure 2.12	Graphical representation of tree crown margin properties	22
	(A) entire (B) crenulated and (C) lobed	
Figure 2.13	Snapshot of graphical representation of properties used to	23
	describe leaf (Gardner et al., 2007)	
Figure 2.14	Stepwise procedure to develop image filtering keys	25
Figure 2.15	Photographs of (A) crown key (Artocarpus gomezianus)	28
	and the unidentified photograph (B) provided for the	
	key validation to photo-interpreters	
Figure 3.1	Photographs illustrating the most common crown	30
	properties in Ban Mae Sa Mai, Doi Suthep-Pui	
	National Park, Northern Thailand	

Figure 3.2	Aerial digital photographs of crowns of nine tree	31
	species studied in Ban Mae Sa Mai, Doi Suthep-Pui	
	National Park, Northern Thailand. (1) Artocarpus gomezianus,	
	(2) Castanopsis calathiformis, (3) Castanopsis tribuloides,	
	(4) Choerospondias axillaris, (5) Ficus altissima,	
	(6) Magnolia garrettii, (7) Pinus kesiya,	
	(8) Prunus cerasoides, (9) Toona ciliata	
Figure 3.3	Flow chart of tree crown dichotomous keys (June 2018)	33
Figure 3.4	Flow chart of tree crown dichotomous keys (July 2018)	35
Figure 3.5	Flow chart of tree crown dichotomous keys (August 2018)	37
Figure 3.6	Flow chart of tree crown dichotomous keys (September 2018)	39
Figure 3.7	Flow chart of tree crown dichotomous keys (October 2018)	41
Figure 3.8	Flow chart of tree crown dichotomous keys (November 2018)	43
Figure 3.9	Flow chart of tree crown dichotomous keys (December 2018)	45
Figure 3.10	Flow chart of tree crown dichotomous keys (January 2019)	47
Figure 3.11	Aerial digital photographs of leaf of nine tree species studied	48
	in Ban Mae Sa Mai, Doi Suthep-Pui National Park, Thailand.	
	(1) Artocarpus gomezianus, (2) Castanopsis calathiformis,	
	(3) Castanopsis tribuloides, (4) Choerospondias axillaris,	
	(5) Ficus altissima, (6) Magnolia garrettii, (7) Pinus kesiya,	
	(8) Prunus cerasoides, (9) Toona ciliata	
Figure 3.12	Flow chart of leaf dichotomous keys (June 2018)	50
Figure 3.13	Flow chart of leaf dichotomous keys (July 2018)	52
Figure 3.14	Flow chart of leaf dichotomous keys (August 2018)	54
Figure 3.15	Flow chart of leaf dichotomous keys (September 2018)	56
Figure 3.16	Flow chart of leaf dichotomous keys (October 2018)	58
Figure 3.17	Flow chart of leaf dichotomous keys (November 2018)	60
Figure 3.18	Flow chart of leaf dichotomous keys (December 2018)	62
Figure 3.19	Flow chart of leaf dichotomous keys (January 2019)	64
Figure 3.20	Image J filtered images for tree crowns (circled) of nine	65
	tree species studied in Ban Mae Sa Mai, Doi Suthep-Pui	

	National Park, Thailand, (1) Artocarpus gomezianus,	
	(2) Castanopsis calathiformis, (3) Castanopsis tribuloides,	
	(4) Choerospondias axillaris, (5) Ficus altissima,	
	(6) Magnolia garrettii, (7) Pinus kesiya,	
	(8) Prunus cerasoides, (9) Toona ciliata	
Figure 3.21	Artocarpus gomezianus image filtering keys	66
Figure 3.22	Castanopsis calathiformis image filtering keys	66
Figure 3.23	Castanopsis tribuloides image filtering keys	67
Figure 3.24	Choerospondias axillaris image filtering keys	67
Figure 3.25	Ficus altissima image filtering keys	68
Figure 3.26	Magnolia garrettii image filtering keys	68
Figure 3.27	Pinus kesiya image filtering keys	69
Figure 3.28	Prunus cerasoides image filtering keys	69
Figure 3.29	Toona ciliata image filtering keys	70
Figure 3.30	Overall Tree Species Identification Accuracy	95
	(high to low % F)	
Figure 3.31	Overall Monthly Tree Species Identification Accuracy	97
Figure 3.32	Prunus cerasoides flowering. Photographs of same tree	103
	crown taken in June 2018 (left) and in January 2019 (right).	
Figure 3.33	98.2 (BMSM Training plot) 3D model	106
	(Pix4D)-Orthorectified photographs (Left) and	
	Original digital photographs (right)	
Figure 3.34	Profile diagram of mixed forest (Richards, 1996)	107

r

LIST OF EQUATIONS

Page

29
29
29

LIST OF ABBREVIATIONS

ANR	Assisted Natural Regeneration
BMSM	Ban Mae Sa Mai
CC	Crown Color
СМ	Crown Margin
CMOS	Complementary Metal Oxide Semiconductor sensor
CMU	Chiang Mai University
СТ	Crown Type
FORRU-CMU	Forest Restoration Research Unit, Chiang Mai University
GPS	Global Positioning System
HCS	Horizontal Crown Shape
HSB	Hue, Saturation and Brightness
ISO	International Standard Organization
LA	Leaf Arrangement
LC	Leaf Color
LT	Leaf Type
macOS	Macintosh Operating System
NIH	National Institutes of Health
RGB	Red, Green, Blue
SGS	Species or Group of Species
UN	United Nations
UAV	Unmanned Aerial Vehicle
VCS	Vertical Crown Shape

GLOSSARY

Alternate	leaf arranged singly at each node on a stem or axis
	(not opposite or whorled)
Angiosperms	one of the main divisions of flowering plants,
	containing plants that have ovules enclosed in ovary
Canopy	upper, well-illuminated tree crowns forming roof of
	the forest
Compound leaf	a leaf divided into leaflets, each of which often has
	the general appearance of a whole leaf (see pinnate,
	paripinnate, imparipinnate)
Crown	it refers to the totality of an individual plant's
	aboveground parts, including stems, leaves, and
	reproductive structures
Deciduous	shedding leaves annually or periodically; not
	evergreen
Digital aerial photograph	photographs taken from above with digital camera
	from unmanned aerial vehicles or aircrafts
Elliptic	refers to leaf shape that is widest in the middle and
	tapers towards both ends
Evergreen	a plant that retains its leaves throughout the year
Flower	the structure for sexual reproduction in the
	Angiosperms usually consisting of male organs
	(comprising the stamens) and female organs
	(comprising the pistils)
Fruit	the ripened ovary, bearing the seeds
Framework tree species	are indigenous, non-domesticated, forest tree
	species, which, when planted on deforested sites,
	rapidly re-establish forest structure and ecological
	functioning, whilst attracting seed dispersing
	wildlife

Framework species method	planting indigenous forest tree species, which can
	rapidly re-establish canopy cover and attract seed-
	dispersing wildlife, to accelerate forest regeneration
	and biodiversity recovery
Herbarium	a collect of dried plant specimens for scientific study
Imparipinnate	an odd pinnate, with a terminal leaflet; an unequal
	number of leaflets
Lanceolate	shaped like the head of the spear or lance, with
	widest part at the middle
Leaflet	first sub-division of a compound leaf
Oblong	much longer than broad, with sides nearly parallel,
	widest in the middle
Ovate	with an oval outline broader towards the base than
	apex, and round ended
Paripinnate	a compound leaf divided into leaf divided into pairs
	of leaflets, with no terminal leaflet, i.e. an even
	number
Phenology	the pattern of flowering and fruiting throughout the
	year
Pinnate	compound leaf with leaflets arranged along each side
	of a common stalk, usually more or less in the same
	plane
Simple	a leaf with one blade
Spiral	leaf arranged in spirals
Terminal	at the tip or apex

Chapter 1

Introduction

In most countries, tree seed collection from remnant forest remains essential for forest restoration projects, but current methods are primitive. Collectors walk along forest trails, with binoculars pointed aloft, searching for ripe fruits amongst the minute fraction of the forest canopy that is visible from the ground. Even when a fruiting tree is found, the seeds may not be ripe, necessitating a tedious return trip. So, collectors tend to visit the same trees year after year, which narrows the genetic variety of the planting stock. Clearly, conventional seed collection is inefficient, unpredictable and consequently expensive.

The possibility of approaching trees from above, using remote sensing platforms, is therefore an attractive alternative and various tool are being developed to meet this need (Sutton, 2001). Remote sensing techniques, particularly hyperspectral and high-resolution satellite imaging offer potential alternatives for mapping species distributions. Although remote sensing has become a standard tool for assessing the spatial structure, complexity and dynamics of forests over large areas, especially in the temperate zone (Pouliot *et al.*, 2002; Leckie *et al.*, 2003; Gergel *et al.*, 2007), few studies have successfully used satellite images to map tree species distributions in tropical forests (Clark *et al.*, 2005; Asner *et al.*, 2008). Even when hyperspectral and high-resolution satellite images are used, it is difficult to identify tree species (Read *et al.*, 2003; Clark *et al.*, 2004) and such techniques are very expensive. Therefore, few research institutions, which study tropical forests can afford them (Nagendra & Rocchini, 2008). A potential simple and inexpensive alternative is high resolution digital aerial photographs (Vooren & Offermans, 1985; Herwitz *et al.*, 2000; Trichon & Julien, 2006; Gonzalez-Orozco *et al.*, 2010; Morgan *et al.*, 2010).

Off-the-shelf drones (UAV's) with high-resolution cameras have become a lot more affordable in recent years (Getzin *et al.*, 2012). Furthermore, they can fly very close to tree crowns, revealing details hitherto unobservable from satellites or conventional aircraft. In this study, I acquired digital aerial photographs using a DJI Phantom 4 Pro

drone over eight months at Ban Mae Sa Mai (BMSM), Doi Suthep-Pui National Park, Northern Thailand. The photographs were used to develop visual species-identification keys, based on crown and leaf characteristics and image filtering for nine tree species (*Artocarpus gomezianus* Wall. Ex Trecul, *Castanoposis calathiformis* (Skan) Rehder & E.H. Wilson, *Castanopsis tribuloides* (Sm.) A.DC., *Choerospondias axillaris* (Roxb.) B.L. Burtt & A.W. Hill, *Ficus altissima* Blume, *Magnolia garrettii* (Craib)V.S. Kumar, *Pinus kesiya* Royle ex Gordon, *Prunus cerasoides* Buch, Ham.ex D. Don, *Toona ciliata* M. Roem). The keys were then tested for reliability in another similarly aged validation plot, using independent volunteer observers to determine the percent found (tree crowns correctly identified as target species), the errors of commission (missed crowns of the target tree species) and errors of omission (tree crowns misidentified as target species).

1.1. Literature review

Studies on the potential use of aerial photographs for tropical tree identification started in the early 1970's. Sayn-Wittgenstein *et al.* (1978) found that species could be identified with a reasonable degree of success in Surinam. Subsequently, Myers (1982a) explored means of describing upper canopy tree crowns in Northern Queensland rain forests in Australia, developing terminologies based on structural characteristics of internal crown parts, using stereoscopy. These photographs were used to identify crown features by eye. An overall accuracy of 75% was obtained for 24 species and 80 to 100% for important timber species.

Since the 1990's, significant advances in aerial photo survey techniques have been made through use of photographs that have finer resolution and cover large forest areas (Brandtberg & Walter, 1998; Culvernor, 2002; Fenshman *et al.*, 2002; Chubey *et al.*, 2006). Trichon (2001, and Trichon & Jullien, 2006) developed keys for identifying individual tree species from high resolution aerial photographs and assessed the accuracy of these identifications in test locations, focusing on errors of commission, i.e., the percent of crowns incorrectly identified as a target species. In order to map canopy tree densities from aerial photographs, errors of both commission and omission (the percent of canopy trees of the target species missed in the aerial mapping) are both important. The authors developed a typology, with detailed classification criteria, for individual upper crown layers, in French Guyana for 12 tree categories. Photographs were taken along parallel

transects, enabling stereoscopic views between photo-pairs. They surveyed the P16 plot in October 1996 from a hot-air airship during the "Opertion Guyane 96" scientific mission. They used a FM2 Nikon camera with a 35-mm lens loaded with color slides (Fuji Sensia, 400 ASA). Photographs over the P11 plot were taken in July 1997 from a helicopter, at three altitudes. In each plot, they used mylar balloons filled with helium to serve as spatial landmarks, both during the flight and for further mapping of the canopy. Digital photomosaics were built and inserted in the Paracou GIS. Paper photomosaics were also produced to help locating during field work. Visual interpretation of the photographs was very clear for recognizing some structures within the crown. Trichon & Julien (2006) tested the accuracy of Trichon's (2001) method, obtaining 87% overall tree species identification accuracy, using aerial photography in French Guyana. They used a 5-ha plot for the training set and 16.25 ha for the validation sets. Their terminology was based on crown structural criteria such as shape and texture. The crown criteria to delineate tree species included crown size, status, contour and architecture, foliage cover, texture, color and phenology.

Gonzalez-Orozco et al., 2010 developed an aerial approach to map tree species in Amazonian rainforests. A combination of high-resolution aerial photographs, dichotomous keys and a web-based interface was used for the characterization and identification of tree crowns. Their main objectives were to understand and describe crown properties, suitable for taxonomic identification of 10 taxa; to classify the crown properties in a taxonomical manner, using a dichotomous key, and to determine the accuracy of the keys via a web-based interface. Aerial photography was taken using a Kodak DCS420A digital camera. The camera was mounted vertically in the bottom of the aircraft, level with an open window. Photographs were taken at an elevation of 600 m above the ground, providing images with a pixel size of 21.4 cm and a spatial coverage of 524 m, 348 m. These photographs were used for identification of the crowns and were included in the taxonomic keys. For georeferencing purposes, photographs were also taken at 1200 m above ground. Low-elevation aerial photography, which produces highresolution data, is not routinely used in the Amazon basin because cloud-free days are rare. Owing to limitations in fuel capacity and high winds which caused unexpected deviation from pre-determined flight routes, it was only possible to cover 80% of the Tiputini Biodiversity Station (TBS) reserve area by airplane. Both high-quality images

and distorted imagery was collected. The set of images used for our analysis were those that were not blurred and did not contain irregularities such as shadows and bright illumination. Gyroscopic instrumentation was not used and therefore crowns in these images were geometrically distorted. In order to reduce the motion effect and improve the image quality, a motion compensation frame was used. The camera was calibrated to determine the relationship between the distance of the sensor from the target, the spatial resolution and spatial coverage. Images were also taken from a helium balloon at less than 200 m above the ground. This complementary technique was used to obtain hyperresolution images of the crowns and establish control points in the observable features of the landscape. The helium balloon images were used as a reference for creating a more robust control point strategy. The combination of the hyper-resolution images (approximately 6 cm pixel size) with the low-elevation airborne imagery was used to improve accuracy in our methodology. The study concluded that crown characteristics, visually identified from aerial photographs, combined with dichotomous keys and a webbased interface, may be a suitable tool for operational purposes, but it should be combined with an automatic classification approach. Identification accuracy averaged 70% for five of the ten taxa studied. Accuracy improved when example images of each tree species were included in the key. The method was well-suited to identify palms and Cecropia trees, with an overall accuracy of >70%. Accuracy ranged from 50 to 70% for Inga and Parkia. Accuracy for the other taxa was <50%. Aerial identification of Amazonian trees using photo-interpretation was less accurate, when the upper layer of the crown had a poorly defined texture e.g. crowns with patterns that contain an irregular surface and low degree of clumping. Taxa that shared common crown properties were the hardest to distinguish. Features that were most indistinguishable were single crowns with foliage textures that vary from mottled to smoky types. Guarea and Pouteria were the most difficult genera to distinguish using the key.

Garzon-Lopez *et. al.* (2012) evaluated the potential use of canopy tree crown maps, derived from high-resolution aerial digital photographs, as a relatively simple method for measuring large-scale tree distributions. At Barro Colorado Island (BCI), Panama, they used high-resolution aerial digital photographs (~0.129 m/pixel) to identify tree species and map crown distributions of four target tree species. The photographs were taken from a small plane (Cessna 172) that flew parallel transects over BCI. The door of the plane

was removed and the photographer took the photographs with a digital camera (12.3megapixel digital SLR camera -Fuji FinePix S3 Pro- with a 35-mm lens, f-stop 4.5-4.8, shutter speed 1/700–1/1000 s, and ISO speed 400) pointing straight down from the plane while sitting at the entrance and secured with a harness. A constant altitude was maintained. Transects were flown using the directions of a printed flying plan and tracked with a GPS receiver (Garmin 60CSx). Flights were flown in overlapping north-south swaths at an altitude of 400 m in 2005, 700 m in 2006 and 800 and 1000 m in 2007. In 2005, each photograph covered 8.6 ha with a spatial resolution of 0.085 m/pixel. In 2006, coverage and resolution averaged 15.9 ha and 0.114 m/ pixel. The aerial photographs were registered to a geo-referenced March 2004 Quickbird satellite image of BCI (Digital-Globe, Longmont, CO, U.S.A.) using ERDAS IMAGINE v.8.7 software (Leica Geosystems, GA, U.S.A.). They determined crown mapping accuracy by comparing aerial and ground-mapped distributions and tested whether the spatial characteristics of the crown maps reflect those of the ground-mapped trees. Nearly a quarter (22%) of the common canopy species had sufficiently distinctive crowns to be good candidates for reliable mapping. The errors of commission (crowns misidentified as a target species) were relatively low, but the errors of omission (missed canopy trees of the target species) were high. Only 40 percent of canopy individuals were mapped on the air photographs. Despite failing to accurately predict exact abundances of canopy trees, crown distributions accurately reproduced the clumping patterns and spatial autocorrelation features of three of four tree species and predicted areas of high and low abundance. They concluded that visual analysis of high-resolution aerial photography is suitable for the mapping of specific tropical forest canopy tree species across large spatial scales. The method was a relatively low-cost and low-tech alternative to large-scale ground surveys and hyper-spectral remote sensing, with various promising potential applications.

Most researchers in past used photographs taken from customized cameras, mounted on hot-air airships, helicopters, small planes, customized multi-rotor copter drones (Trichon *et al.*, 2006; Morgan *et al.* 2010; Dandois *et al.*, 2013) to develop taxonomical identification systems for tree species, map vegetation mapping or monitor tropical forest dynamics. However, with recent technological advances now allow the use of lightweight unmanned aerial vehicles, flying close to forest canopies, as an alternative to more costly satellite or airborne based imaging systems. UAV's can cost as little as

USD 300 to a few thousand dollars (Koh and Wich, 2012; Anderson & Gaston, 2013; Getzin *et al.*, 2012).

Paneque-Gálvez *et al.*, 2014, assess a more effective approach using small low cost unmanned aerial vehicle (UAV) to collect data for community-based forest monitoring (CBFM) programs which is a fundamental component of national forest monitoring systems and programs to measure, report and verify REDD+ activities. They discussed about the potential advantages and disadvantages of use of UAV for communities, partner organizations and forest data end-users and to what extent their utilization, coupled with ground surveys and local ecological knowledge, would improve tropical forest monitoring. They reported that the utilization of small drones can enhance CBFM and that this approach is feasible in many locations throughout the tropics if some degree of external assistance and funding is provided to communities.

Zahawi et al., 2015 assessed whether remote sensing measurements from lightweight unmanned aerial vehicles (UAV) are a cost-effective substitute for traditional labor intensive and costly field-based measures for assessing forest recovery and habitat quality. An inexpensive UAV-based remote sensing methodology, "Ecosynth", was applied to measure forest canopy structure across field plots in a 7-9-yr tropical forest restoration study in southern Costa Rica. Ecosynth methods combined aerial images from consumer-grade digital cameras with computer vision software to generate 3D 'point cloud' models of vegetation at high spatial resolutions. Ecosynth canopy structure measurements were compared to field-based measures and their ability to predict the abundance of frugivorous birds; key seed dispersers that are sensitive to canopy structure. Ecosynth canopy height measurements were highly correlated with field-based measurements ($R^2 \ge 0.85$), a result comparable in precision to LiDAR-based remote sensing measurements. Ecosynth parameters were also strongly correlated with aboveground biomass ($R^2 \ge 0.81$) and percent canopy openness ($R^2 = 0.82$). Correlations were weaker with proportion-based measures such as canopy roughness ($R^2 = 0.53$). Several Ecosynth metrics (e.g., canopy openness and height) predicted frugivore presence and abundance at levels of accuracy similar to those of field-based measurements. Therefore, they reported that Ecosynth UAV remote sensing provides an effective alternate methodology to traditional field-based measures of evaluating forest structure and complexity across landscapes.

Baena *et al.*, 2017 studied if UAVs offer an affordable alternative to satellites in obtaining both color and near infrared imagery to meet the specific requirements of spatial and temporal resolution of a monitoring system. Combining this with their capacity to produce three dimensional models of the environment provides an invaluable tool for species level monitoring. They demonstrated that object-based image analysis of very high-resolution UAV images can identify and quantify keystone tree species and their health across wide heterogeneous landscapes. The analysis exposes the state of the vegetation and serves as a baseline for monitoring and adaptive implementation of community-based conservation and restoration in the area.

Onishi & Ise (2018) developed a machine vision system for the automatic classification of trees using an unmanned aerial vehicles (UAV) and a publicly available package for deep learning. They segmented the UAV image of forest into individual tree crowns and carried out object-based deep learning. As a result, the system was able to classify 7 tree types (deciduous broad-leaved, deciduous coniferous, evergreen broad-leaved, *Chamaecyparis obtuse, Pinus strobus, Pinus elliottii, Pinus taeda*) at 89.0% accuracy. This research was notable, because they only used basic RGB (red green blue) images from a DJI Phantom 4 drone and displayed the potentiality to classify individual tree species in a very cost-effective manner, which can become an important tool for forest researchers and managers.

1.2. Objectives of the study

The objectives of this study were:

- To develop taxonomic keys to identify tree species from digital aerial photographs taken by an on-the-shelf UAV, based on:
 - a) crown morphology (type, shape, texture);
 - b) leaf characteristics (shape, arrangement);
 - c) phenology (leaf fall/flush, flowering, fruiting, etc.);
 - d) image filtering (hue, saturation, brightness) using Image-J.
- To test the reliability and efficacy of such keys to locate tree species in unknown forest.

Chapter 2

Materials and Methodology

1. Study Area

The study area was located at Ban Mae Sa Mai (BMSM) (18°51'29.38"N 98°50'53.60"E), Doi Suthep-Pui National Park in Northern Thailand (1,360 m above sea level) (Figure 2.1), which is about 30 km away from Chiang Mai city. The research was carried out in two restored forest plots namely; 98.2 (Training plot) and 98.3 (Validation plot) each with a total area of 0.0064 km2. The forest in both of these plots had been restored by Forest Restoration Research Unit, Chiang Mai University (FORRU-CMU), in collaboration with local communities using the framework species method, in the year 1998. The climate in northern Thailand consists of three seasons; rainy (mid-May to mid-October), winter (mid-October to mid-February) and summer (mid-February to mid-May). The extreme temperature for 2005-2010 in Doi Ang Kang meteorology station, Chiang Mai province, located at similar altitude ranged from 3.9°C (winter) to 32.1°C (summer). The average annual rainfall (2005-2015) at Doi Ang Kang meteorology station, Chiang Mai province located at similar altitude was 1897.6 mm (Thailand Meteorological Department).

Figure 2.1 Location of study area at Doi Suthep-Pui National Park, Northern Thailand

2. The Framework Species Method

The forest in the study site had been restored using the framework species method of forest restoration as follows. The framework species method involves planting the minimum number of tree species required to re-instate the natural processes of forest regeneration and recover biodiversity. It combines the planting of 20-30 key tree species with various assisted natural regeneration (ANR) techniques to enhance natural regeneration, creating a self-sustained forest ecosystem from a single planting event. Originally conceived in Northern Queensland, to repair damaged tropical rainforest (Goosem & Tucker, 1995), the framework species method has been successfully modified to restore seasonally dry tropical forests to deforested sites in northern Thailand's conservation areas (Elliott *et al.*, 2003).

Framework trees are indigenous, non-domesticated, forest tree species, which, when planted on deforested sites, rapidly re-establish forest structure and ecological functioning, whilst attracting seed dispersing wildlife. Thus, framework tree species promote dispersal of seeds from nearby forest and create conditions conducive to their germination, resulting in recruitment of tree species in planted plots (Figure 2.2). The essential ecological characteristics of framework tree species are therefore:

- a) High survival when planted out in deforested sites;
- b) Rapid growth;
- c) Dense, spreading crowns that shade out herbaceous weeds;
- d) Flowering and fruiting, or provision of other resources, at a young age, which attract seed-dispersing wildlife.
- e) Easy to propagate

In the seasonally dry tropics, where wild fires in the dry season are an annual hazard, an additional essential characteristic of framework species is resilience after burning. When fire prevention measures fail, the success of forest restoration plantings can depend on the ability of the planted trees to re-sprout from their rootstock after fire has burnt their shoot systems (i.e. coppicing).

Figure 2.2 How Framework species method works

3. Methodological Strategy

3.1. Mapping and Ground truthing of selected species

Digital aerial photographs were obtained over the training plot (98.2) using a DJI Phantom 4 Pro at an altitude of 100 m above ground in June 2018. The aerial photographs were taken at 50-70 % overlap which was adjusted manually while photographs were taken (Figure 2.3).

Figure 2.3 Snapshot of marked crowns in macOS Preview App

The digital aerial photographs were then analyzed by eye. All visible crowns were marked and numbered using a freehand marker in the Preview App (MacOS) (as shown in Figure 2.3). Ground truthing was then carried out, to locate and match tree crowns at ground with those in the images. The selection of tree species for the study was based on minimum number of crowns which we were able to locate and match at the field. The minimum threshold for number of crowns for a species to be selected was set at 3 crowns per species in order to study variation within species (Table 2.2).

The tree species were identified by locating identification tags attached to the trees by a previous FORRU-CMU study. For trees without such tags, leaf samples were voucher specimens were collected and compared with named specimens in the CMU Herbarium.

A total of 48 tree crowns of nine tree species were identified and used to develop keys in the training plot (98.2) (Table 2.2). The selected tree species for the study are listed in Table 2.1.

SN	Family	Species	
1	Moraceae	Artocarpus gomezianus Wall. Ex Trecul	Evergreen
2	Fagaceae	Castanoposis calathiformis (Skan)	Evergreen
		Rehder & E.H. Wilson	
3	Fagaceae	Castanopsis tribuloides (Sm.) A.DC.	Evergreen
4	Anacardiaceae	Choerospondias axillaris (Roxb.) B.L.	Deciduous
		Burtt & A.W. Hill	
5	Moraceae	Ficus altissima Blume	Evergreen
6	Magnoliaceae	Magnolia garrettii (Craib)V.S. Kumar	Deciduous
7	Pinaceae	Pinus kesiya Royle ex Gordon	Evergreen
8	Rosaceae	Prunus cerasoides Buch, Ham.ex D.	Deciduous
		Don	
9	Meliaceae	Toona ciliata M. Roem	Deciduous

Table 2.1 List of selected tree species for study

Table 2.2 Number of tree crowns of target species used to develop keys (training plot)

SN	Target species	Number of tree crowns used to develop keys
1	Artocarpus gomezianus	4
2	Castanopsis calithiformis	5
3	Castanopsis tribuloides	4
4	Choerospondias axillaris	8
5	Ficus altissima	6
6	Magnolia garrettii	7
7	Pinus kesiya	3
8	Prunus cerasoides	7
9	Toona ciliata	4
Total number of tree crowns		48
4. Digital Aerial Photograph Acquisition

4.1. Materials Used

4.1.1. DJI Phantom 4 Pro

The DJI Phantom 4 Pro is an unmanned aerial vehicle (UAV) equipped with a 20megapixel camera (1-inch CMOS sensor) on a gimbal. It comes with an "intelligent" battery, which enables flights of up to 30 minutes (Figure 2.4) and it has obstacle sensing in 5 directions (excluding straight up) made up of vision and infrared sensors, so is ideal for flying close to tree crowns without crashing into them.

Figure 2.4 DJI Phantom Pro 4 at BMSM Training plot

4.1.2. LITCHI Application

Litchi is one of the most popular autonomous flight applications used to fly hobbyist drones. Waypoints and points of interest are easily set in advanced, using Google Earth or the application's "flight hub" in a browser on a laptop or directly on the tablet that is used to control the drone's flight. These waypoint "missions" allow the app to provide smooth and slow, pre-programmed flights, which result in accurately and consistently placed photographs, every time the saved missions are flown. Missions are completed autonomously, regardless of whether or not there is a signal between the drone and the controller, because the flight plan is uploaded into the on-board memory of the drone at the start (Figure 2.5).

Figure 2.5 Snapshot of LITCHI application

4.2. Photograph Acquisition Procedure

4.2.1. Digital Aerial Photographs

Aerial digital photographs were acquired from DJI Phantom 4 Pro digital camera at an altitude of 50 meters above ground, over all individual target tree species, once every month for eight months (June 2018 to January 2019). In order to maintain uniformity of the quality of photographs for all months, the ISO camera setting for DJI Phantom Pro 4 was set to automatic (Figure 2.6). In automatic settings, the ISO range (100-3200), Mechanical shutter speed (8-1/2000s) and Electronic shutter speed (8-1/8000s).

Figure 2.6 Snapshot of camera ISO setting

4.2.2. Flight Plans

The GPS coordinates of all the target trees were recorded on the ground use a handheld GPS receiver and then used to program flight plans in the LITCHI application. At first, I prepared three (3) flight plans for training and one (1) for the validation plots. However, I realized that I had included too many waypoints to complete within the charge of the UAV battery. Therefore, the number of flight plans was increased to four (4) for the training plot and one (1) for validation plot (Figure 2.7).

Figure 2.7 Flight plan of validation plot

4.3. Photograph Acquisition

Photography along the fixed flight plans was repeated monthly from June 2018 to January 2019, using the DJI Phantom 4 Pro, flown 50 m above the ground using the Litchi flight planning software. The resolution of the photograph was 5472 x 3078 pixels.

5. Weather during the study period

Northern Thailand experiences incessant rain during months of June to August. In 2018, rain continued until end of October, which proved quite a challenge since the drone cannot be flown in rain. I often had to wait for hours for the weather to clear before the drone could be flown safely. Photographs were mostly acquired between 10:30 to 13:00 h. The sky was usually overcast with some intermittent sunshine during the wet season and mostly clear with plenty of sunshine during dry season (Figure 2.8).

Figure 2.8 Pictures of weather conditions at study area during wet season

6. Development of Dichotomous keys

The digital aerial photographs were analyzed to develop dichotomous keys based on crown and leaf characteristics, phenology and image filtering (Image J).

6.1. Materials used

6.1.1. MacOS (Macintosh Operating System) Preview Application (app)

Preview app is an image and Portable Document Format (PDF) viewer app in MacOS; it enables users to view and print digital images and PDF files (Figure 2.9). Digital aerial photographs from field were stored in a personal computer (PC) in Joint Photographic Experts Group (JPEG) file format. These photographs were then viewed using MacOS Preview App for describing and developing keys based on crown and leaf characteristics and phenological observations and image filtering.

Figure 2.9 Snapshot of macOS Preview app viewer

6.1.2. Image J

Image J is a free, public-domain, Java, image-processing program developed by the National Institute of Health (NIH), United States of America. It runs, either as an online applet or as a downloadable application, on any computer with a Java 1.4 or later virtual machine. It can display, edit, analyze, process, save and print images of various resolutions and formats. It can be used to measure distances and areas on digital photos, by relating numbers of pixel to known measurements, but for this project the main function used was the image filtering tool on RGB (Red, Green, Blue) images using hue,

saturation and brightness filters. Hue describes the attribute of pure color, and therefore distinguishes between colors. Saturation (sometimes called "purity" or "vibrancy") characterizes the shade of color, i.e., how much white is added to the pure color. Brightness (also known as Value) describes the overall brightness of the color. The tool colors red any pixels that fall within the range of the hue, saturation and brightness levels that are set by the user. So, for example a tree species with foliage of a more yellowish green than the surrounding trees could be picked out in red, by selecting the yellow end of the spectrum in the hue setting (Figure 2.10). The image J software can be downloaded from publicly available website https://imagej.nih.gov/ij/download.html.

Figure 2.10 Snapshot of Image J software

6.2. Methodology

6.2.1. Crown, leaf, Image filtering and phenological keys

Tree crown and leaf keys were developed observing the digital aerial photographs obtained from the field using MacOS preview app (Figure 2.9). All visible characteristics in photographs were reviewed and selected as description properties. The details are presented in following paragraphs.

6.2.2. Description of Crown Keys

Trichon & Julien (2006) and Gonzalez-Orozco *et al.*, 2010 crown criteria were modified and adapted to match the crown types of the tree species selected for this study. Several descriptors of each of 7 crown properties were developed as presented in Table 2.3.

SN	Crown	Descriptor/class	Description
	properties		
1	Crown Type	Single	Crown entire without sub-division
	(CT)	Multiple	A crown that has two or more sub-divisions
			within with each component resembling an
			individual crown
2	Vertical	Slightly rounded, more	Described based on intensity of curvature at
	Crown	rounded, hemispherical,	the highest point of crown surface. Pointed >
	Shape (VCS)	pointed	hemispherical > more rounded > slightly
			rounded
		Flat	Crown surface appears to be more or less
			horizontal

Table 2.3 Properties used for describing tree crowns. Adapted and modified Trichon &Julien (2006) and Gonzalez-Orozco et. al. (2010)

Table 2.3 (Continued)

SN	Crown	Descriptor/class	Description
	properties		
3	Horizontal Crown Shape (HCS)	Round, oval, elongated, star shaped, irregular	Described based on ratio of crown length: crown breadth: if 1:1 = round; if 1.5:1 = oval; if 2:1 = elongated; if crown shape does not follow above patterns, it is described as "irregular".
4	Crown Margin (CM)	Entire, crenulated, lobed	Entire - if the crown margin is more or less smooth without marked indentations; crenulated - if crown margin has indentations penetrating less than 25% towards to Centre; lobed - crown with deep indentations (>25%). towards its center
5	Foliage Texture (FT)	Smooth Rough	Branches or any other lower elements concealed by dense compact foliage Branches or any other lower elements are distinguishable through the foliage
6	Crown Color (CC)	Green, yellow, red, brown, white, pink, blue	Shades of color or mixture of colors
7	Phenology	Leaf flush, Leaf fall* (described as crown density of 0, 3/4, 1/2, 1/4, 1), flowering, fruiting	Phenological phenomenon at the crown level

*To describe the extent of leaf fall, the concept of crown density developed by Koelmeyer (1947) was used. A tree with full crown of mature leaf was considered to have a crown density of 1 while one which had shed all its leaf was considered to have a crown density of 0. Intermediate degrees of leaf shed were recorded by fractions of 3/4, 1/2, 1/4. The minimum crown density thus, determines the maximum extent of leaf shed.

Figure 2.11 Graphical representation of vertical tree crown shape properties (A) flat, (B) slightly rounded, (C) more rounded, (D) hemispherical and (E) pointed.

Figure 2.12 Graphical representation of tree crown margin properties (A) entire (B) crenulated and (C) lobed

6.2.3. Description of Leaf keys

Since the UAV was flown close to the tree crowns (<30 m) and was equipped with a high-resolution camera, leaf characteristics, hitherto unobservable from conventional remote sensing platforms, could be recorded. Accordingly, leaf properties and descriptors were developed, based on conventional leaf taxonomy. I selected four of the most distinctive leaf properties to distinguish among the target tree species (Table 2.4).

Table 2.4 Properties used for describing leaves and their descriptors. Adapted & modified from Gardner et al. (2007)

SN	Leaf properties	Descriptor		
1	Leaf Type (LT)	Simple or compound		
2	Leaf Arrangement (LA)	Alternate, opposite, spiral, whorled, bundled,		
		imparipinnate, paripinnate		
3	Leaf Shape (LS)	Lanceolate, ovate, elliptic, oblong, needle-like,		
		elliptic		
4	Leaf Color (LC)	Green, pink, yellow, red, mixture of colors,		
		shades of color		

Figure 2.13 Snapshot of graphical representation of properties used to describe leaf (Gardner et al., 2007)

6.2.4. Image filtering keys

Keys, based on quantifiable filtering of image hue, saturation and brightness (HSB) were developed. Hue describes the attribute of pure color; saturation characterizes the shade of color and Brightness describes the overall brightness of the color. Image J software was used to develop these keys. The digital photographs from the field were loaded into Image J software, and the color threshold filter were applied and fiddled the Hue, Saturation & Brightness sliders until all crowns of the target species turned red. The stepwise process of image filtering key development process is demonstrated in Figure 2.14.

Figure 2.14 Stepwise procedure to develop image filtering keys

Since crown, leaf and Image filtering properties varies with season, separate keys were developed for each month of the study.

6.2.5. Validation of keys

Key validation was carried out by adapting and modifying the methods of Trichon & Julien (2006) and Gonzalez-Orozco (2010).

Eleven (11) volunteer 'photo-interpreters' participated in validation process. It comprised of 3 undergraduate students, 5 postgraduate students and 3 staff from Forest Restoration Research Unit, Chiang Mai University (FORRU-CMU) and came originally from Laos, Liberia, USA and Thailand. The key validation was conducted in three batches over February 12-14, 2019.

6.3. Validation Procedure

6.3.1. Pre-validation activities

The validation activity was carried out in CMU Biology department's computer laboratory. Image J software and a folder consisting of one target crown key and two unidentified photographs for each species were preinstalled in the computers used for the validation process. The photographs for seven months (July 2018 to January 2019) were used for validation activity. The folder provided to each photo-interpreter comprised of photographs of nine species and all seven months, which was randomly mixed. For instance, if photograph for *Artocarpus gomezianus* was of July; then, *Castanopsis calathiformis* was for month of August 2018 and so on. The target species sample size and the number of photo-interpreters involved in each month's key validation are shown in Table 2.5 and Appendix C- Key Validation Results).

For two tree species (*Pinus kesiya* and *Toona ciliata*) that were absent from validation plot (98.3); therefore, I used photographs from the training plot (98.2). I had counted crowns of all the target tree species in each unidentified photograph prior to validation.

6.3.2. Validation Day activities

The photo-interpreters were briefed about the key development process and definition of terminologies used using Microsoft PowerPoint. Each photo-interpreter were provided with printed copies of dichotomous and monthly tree species identification keys and step-wise direction on 'how to use Image J software'. In order to identify tree

species, photo-interpreters were directed to open the unidentified photographs in Microsoft Paint software. The photo-interpreters then drew a circle around each tree they recognized as one of the 9 target species, using paint brush and then save it in same folder An example of crown key and unidentified photographs provided to photo-interpreters is presented in Figure 2.15. All folders were collected and then results were analyzed.

Table 2.5	Target species sample size (no.	of trees) and photo-interprete	ers involved in
validation			

SN	Target species and photo-	Jul	Aug	Sep	Oct	Nov	Dec	Jan
	interpreters (nos.)							
1	Artocarpus gomezianus	11	20	9	8	4	4	5
	Photo-interpreter	2	3	2	1	1	1	1
2	Castanopsis calathiformis	4	26	-	27	7	10	3
	Photo-interpreter	1	3	-	3	2	1	1
3	Castanopsis tribuloides	3	8	8	6	5	2	4
	Photo-interpreter	1	2	3	2	1	1	1
4	Choerospondias axillaris	6	6	6	14	23	21	12
	Photo-interpreter	1	1	1	2	3	2	1
5	Ficus altissima	4	2	3	1	3	4	6
	Photo-interpreter	1	1	1	1	1	2	3
6	Magnolia garrettii	17	7	9	3	8	17	15
	Photo-interpreter	2	1	1	1	1	2	3
7	Pinus kesiya	4	6	7	3	3	2	2
	Photo-interpreter	2	3	2	1	1	1	1
8	Prunus cerasoides	2	3	2	1	1	1	1
	Photo-interpreter	2	3	2	1	1	1	1
9	Toona ciliata	3	7	9	6	4	3	3
	Photo-interpreter	1	2	3	2	1	1	1

Figure 2.15 Photographs of (A) crown key (*Artocarpus gomezianus*) and the unidentified photograph (B) provided for the key validation to photo-interpreters

6.3.3. Data Analysis

The key validation results were reported as % found (trees correctly identified as target species), % error of omission (missed trees of the target species) and % error of commission (trees misidentified as target species). The formulae to analyze the key validation data was modified and adapted from Gonzalez-Orozco *et al.* (2010).

% Found (F) was calculated as:

Equation 1.1

$$\mathbf{F} = \frac{n^f}{T} \times 100\%$$

where ' n^{f} ' is total number of crowns correctly identified as target species; 'T' is total number of target crowns per species in the photograph;

% Error of Omission (O) was calculated as:

Equation 1.2

$$0 = \frac{n^{o}}{T} \times 100\%$$

where ' n^{o} ' is total number crowns of missed trees of target species; 'T' is total number of target crowns per species in the photograph;

% Error of Commission (C) was calculated as:

Equation 1.3

$$C = \frac{n^c}{T} \times 100\%$$

where ' n^c ' is total number of crowns incorrectly identified as target species; 'T' is total number of target crowns per species in photograph.

The data analysis was carried out using the formulae as stated above for validation results of all individual photo-interpreters and then the final results were reported as average percentage of all 11 photo-interpreters.

Chi-square test was carried out for the results to test for data's statistical significance. SPSS (Statistical Package for Social Science) and ANOVA (Analysis of variance) was used to test for any co-relationship between % found, % Error of Omission, % Error of Commission with tree species and months.

Chapter 3

Results

1. Crown Dichotomous keys

 Crown type
 Crown shape

 Image: Crown shape
 Image: Crown shape

 <tr

Figure 3.1 Photographs illustrating the most common crown properties in Ban Mae Sa Mai, Doi Suthep-Pui National Park, Northern Thailand

Figure 3.2 Aerial digital photographs of crowns of nine tree species studied in Ban Mae
Sa Mai, Doi Suthep-Pui National Park, Northern Thailand. (1) Artocarpus gomezianus,
(2) Castanopsis calathiformis, (3) Castanopsis tribuloides, (4) Choerospondias axillaris,
(5) Ficus altissima, (6) Magnolia garrettii, (7) Pinus kesiya, (8) Prunus cerasoides, (9)
Toona ciliata

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10				
A2	VCS flat \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7				
A3	HCS oval, CM entire, FT smooth, CC dark green				
A4	HCS oval \rightarrow A5: round \rightarrow A6				
Δ5	CM entire FT smooth CC dark green with vellow patches				
AJ	entre, 11 shooth, ee dark green with yenow patenes				
	Magnoua garrettu				
A6	CM entire, FT smooth, CC brownish greenCastanopsis tribuloides				
A7	HCS oval \rightarrow A8; elongated \rightarrow A9				
A8	CM crenulated, FT rough, CC light greenish				
	yellow Artocarpus gomezianus				
	CM entire FT smooth CC dull green Castanopsis calathiformis				
49	CM entire FT smooth CC bright green with vellow spots				
A9	CM entire, FT smooth, CC bright green with yellow spots				
A9	CM entire, FT smooth, CC bright green with yellow spots				
A9 A10	CM entire, FT smooth, CC bright green with yellow spots 				
A9 A10 A11	CM entire, FT smooth, CC bright green with yellow spots 				
A9 A10 A11	CM entire, FT smooth, CC bright green with yellow spots 				
A9 A10 A11	CM entire, FT smooth, CC bright green with yellow spots 				
A9 A10 A11	CM entire, FT smooth, CC bright green with yellow spots 				
A9 A10 A11	CM entire, FT smooth, CC bright green with yellow spots 				
A9 A10 A11 A12	CM entire, FT smooth, CC bright green with yellow spots 				

Table 3.1 Key A: Crowns (June 2018). For abbreviations see Table 2.3.

Figure 3.3 Flow chart of tree crown dichotomous keys (June 2018)

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10
A2	VCS flat \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7
A3	HCS oval, CM entire, FT smooth, CC dark green with yellow patches
A4	HCS oval \rightarrow A5; round \rightarrow A6
A5	CM entire, FT smooth, CC dark green with yellow
	patchesMagnolia garrettii
A6	CM entire, FT smooth, CC brownish
	greenCastanopsis tribuloides
A7	HCS oval \rightarrow A8; elongated \rightarrow A9
A8	CM crenulated, FT rough, CC light greenish
	yellowArtocarpus gomezianus
	CM entire, FT smooth, yellowish dull
	greenCastanopsis calathiformis
A9	CM entire, FT smooth, CC bright green with yellow
	spots Prunus cerasoides
A10	VCS flat \rightarrow A11; more rounded \rightarrow A12
A11	HCS elongated, FT smooth, CC light green with yellow
	spotsChoerospondias axillaris
	HCS irregular, FT rough, CC dull green with yellow spots
A12	CM elongated, FT rough, CC dark green with black
	spotsPinus kesiya

Table 3.2 Key A; Crowns (July 2018). For abbreviations see Table 2.3.

Figure 3.4 Flow chart of tree crown dichotomous keys (July 2018)

35

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10				
A2	VCS flat \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7				
A3	HCS oval, CM entire, FT smooth, CC dark green with yellow				
	patchesFicus altissima				
A4	HCS oval \rightarrow A5; round \rightarrow A6				
A5	CM entire, FT smooth, CC dark green with yellow				
	patchesMagnolia garrettii				
A6	CM entire, FT smooth, CC brownish				
	greenCastanopsis tribuloides				
A7	HCS oval \rightarrow A8; elongated \rightarrow A9				
A8	CM crenulated, FT rough, CC dark				
	greenArtocarpus gomezianus				
	CM entire, FT smooth, brownish				
	greenCastanopsis calathiformis				
A9	CM entire, FT smooth, CC bright greenPrunus cerasoides				
A10	VCS flat \rightarrow A11; more rounded \rightarrow A12				
A11	HCS elongated, FT smooth, CC light green with yellow				
	spotsChoerospondias axillaris				
	HCS is irregular, FT rough, CC dull green				
A12	CM elongated, FT rough, CC dark green with black				
	spotsPinus kesiya				

Table 3.3 Key A; Crowns (August 2018). For abbreviations see Table 2.3.

Figure 3.5 Flow chart of tree crown dichotomous keys (August 2018)

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10					
A2	VCS is flat \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7					
A3	HCS oval, CM entire, FT smooth, CC dark greenFicus altissima					
A4	HCS oval \rightarrow A5; round \rightarrow A6					
A5	CM entire, FT smooth, CC dark green					
A6	CM entire, FT smooth, CC bright greenCastanopsis tribuloides					
A7	HCS oval \rightarrow A8; elongated \rightarrow A9					
A8	CM crenulated, FT rough, CC dull green Artocarpus gomezianus					
	CM entire, FT smooth, dull greenCastanopsis calathiformis					
A9	CM entire, FT smooth, CC bright greenPrunus cerasoides					
A10	VCS flat \rightarrow A11; more rounded \rightarrow A12					
A11	HCS elongated, FT smooth, CC light green with yellow					
	spotsChoerospondias axillaris					
	HCS irregular, FT rough, CC dull greenToona ciliata					
A12	CM elongated, FT rough, CC dark green with black					
	spotsPinus kesiya					

Table 3.4 Key A; Crowns (September 2018). For abbreviations see Table 2.3

Figure 3.6 Flow chart of tree crown dichotomous keys (September 2018)

39

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10
A2	VCS flat, \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7
A3	HCS oval, CM entire, FT smooth, CC dark greenFicus altissima
A4	HCS oval \rightarrow A5; round \rightarrow A6
A5	CM entire, FT smooth, CC dark green
A6	CM entire, FT smooth, CC light greenCastanopsis tribuloides
A7	HCS oval $\rightarrow A8$; elongated $\rightarrow A9$
A8	CM crenulated, FT rough, CC dull greenArtocarpus gomezianus
	CM entire, FT smooth, dull greenCastanopsis calathiformis
A9	CM entire, FT smooth, CC bright green with visible
	branchesPrunus cerasoides
A10	VCS flat \rightarrow A11; more rounded \rightarrow A12
A11	HCS elongated, FT smooth, CC light greenish
	yellowChoerospondias axillaris
	HCS irregular, FT rough, CC dull green with yellow spots with visible
	branches <i>Toona ciliata</i>
A12	CM elongated, FT rough, CC dark green with black
	spotsPinus kesiya

Table 3.5 Key A; Crowns (October 2018). For abbreviations see Table 2.3

Figure 3.7 Flow chart of tree crown dichotomous keys (October 2018)

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10				
A2	VCS flat \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7				
A3	HCS oval, CM entire, FT smooth, CC dark greenFicus altissima				
A4	HCS oval \rightarrow A5; round \rightarrow A6				
A5	CM entire, FT smooth, CC dark green				
A6	CM entire, FT smooth, CC light green with yellow				
	spotsCastanopsis tribuloides				
A7	HCS oval \rightarrow A8; elongated \rightarrow A9				
A8	CM crenulated, FT rough, CC dull green with yellow				
	spotsArtocarpus gomezianus				
	CM entire, FT smooth, dull green with yellowish				
	patchesCastanopsis calathiformis				
A9	CM entire, FT smooth, CC bright green with visible				
	branches Prunus cerasoides				
A10	VCS flat \rightarrow A11; more rounded \rightarrow A12				
A11	HCS elongated, FT smooth, CC light greenish yellow with visible				
	branches Choerospondias axillaris				
	HCS irregular, FT rough, CC dull green with yellow spots with visible				
	branches <i>Toona ciliata</i>				
A12	CM elongated, FT rough, CC dark green with black				
	spots Pinus kesiya				

Table 3.6 Key A; Crowns (November 2018). For abbreviations see Table 2.3

Figure 3.8 Flow chart of tree crown dichotomous keys (November 2018)

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10				
A2	VCS flat \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7				
A3	HCS oval, CM entire, FT smooth, CC bright green Ficus altissima				
A4	HCS oval \rightarrow A5; round \rightarrow A6				
A5	CM entire, FT smooth, CC dark green				
A6	CM entire, FT smooth, CC bright greenCastanopsis tribuloides				
A7	HCS oval \rightarrow A8; elongated \rightarrow A9				
A8	CM crenulated, FT rough, CC dull greenArtocarpus gomezianus				
	CM entire, FT smooth, dull green with yellowish				
	patchesCastanopsis calathiformis				
A9	CM entire, FT smooth, CC only branches visiblePrunus cerasoides				
A10	VCS flat \rightarrow A11; more rounded \rightarrow A12				
A11	HCS elongated, FT smooth, CC light yellow with visible				
	branchesChoerospondias axillaris				
	HCS irregular, FT rough, CC dull green with yellow spots with visible				
	branches <i>Toona ciliata</i>				
A12	CM elongated, FT rough, CC dark green with black				
	spots Pinus kesiva				

Table 3.7 Key A; Crowns (December 2018). For abbreviations see Table 2.3

Figure 3.9 Flow chart of tree crown dichotomous keys (December 2018)

A1	Tree crown type single \rightarrow A2; multiple \rightarrow A10
A2	VCS flat \rightarrow A3; slightly rounded \rightarrow A4; more rounded \rightarrow A7
A3	HCS oval, CM entire, FT smooth, CC bright greenFicus altissima
A4	HCS oval \rightarrow A5; round \rightarrow A6
A5	CM entire, FT smooth, CC dark green
A6	CM entire, FT smooth, CC bright greenCastanopsis tribuloides
A7	HCS oval \rightarrow A8; elongated \rightarrow A9
A8	CM crenulated, FT rough, CC dull greenArtocarpus gomezianus
	CM entire, FT smooth, CC dull green with yellowish
	spotsCastanopsis calathiformis
A9	CM entire, FT smooth, CC only branches visible with pink
	flowersPrunus cerasoides
A10	VCS flat \rightarrow A11; more rounded \rightarrow A12
A11	HCS elongated, FT smooth, CC light yellow with visible
	branches Choerospondias axillaris
	HCS irregular, FT rough, CC dull green with yellow spots with visible
	branches
A12	CM elongated, FT rough, CC dark green with black
	spotsPinus kesiya

Table 3.8 Key A; Crowns (January 2019). For abbreviations see Table 2.3

Figure 3.10 Flow chart of tree crown dichotomous keys (January 2019)

2. Leaf Dichotomous keys

Figure 3.11 Aerial digital photographs of leaf of nine tree species studied in Ban Mae Sa Mai, Doi Suthep-Pui National Park, Thailand. (1) *Artocarpus gomezianus*, (2) *Castanopsis calathiformis*, (3) *Castanopsis tribuloides*, (4) *Choerospondias axillaris*, (5) *Ficus altissima*, (6) *Magnolia garrettii*, (7) *Pinus kesiya*, (8) *Prunus cerasoides*, (9) *Toona ciliata*
Table 3.9 Key B: Leaves (June 2018). For abbreviations see Table 2.4

B1	Leaf type is simple \rightarrow B2; compound \rightarrow B3			
B2	LA is alternate-spiral \rightarrow B4; bundled \rightarrow B5			
B3	LA paripinnate. LS is lanceolate with tapering end, LC is light greenish			
	yellowChoerospondias axillaris			
	LA imparipinnate, LS narrowly ovate with tapering end, LC bright			
	green Toona ciliata			
B4	LS ovate \rightarrow B6; LS elliptic \rightarrow B7; LS lanceolate \rightarrow B8; LS ovate-oblong, LC			
	bright shiny greenPrunus cerasoides			
B5	bright shiny green <i>Prunus cerasoides</i> LS needle-like, LC dark green <i>Pinus kesiya</i>			
B5 B6	bright shiny green <i>Prunus cerasoides</i> LS needle-like, LC dark green <i>Pinus kesiya</i> LC leathery dark green with prominent midrib <i>Ficus altissima</i>			
B5 B6	bright shiny green			
B5 B6 B7	bright shiny green			
B5 B6 B7	bright shiny green			

Figure 3.12 Flow chart of leaf dichotomous keys (June 2018)

B 1	If leaf type is simple \rightarrow B2; compound \rightarrow B3				
B2	LA alternate-spiral \rightarrow B4; bundled \rightarrow B5				
B3	LA paripinnate, LS lanceolate with tapering end, LC light greenish				
	yellowChoerospondias axillaris				
	LA imparipinnate, LS is narrowly ovate and tapering end, LC bright				
	greenToona ciliata				
B4	LS ovate \rightarrow B6; LS elliptic \rightarrow B7; LS lanceolate \rightarrow B8; LS ovate-oblong, LC				
	bright shiny green Prunus cerasoides				
B5	LS needle-like, LC is dark green Pinus kesiya				
B6	LC leathery dark green with prominent midrib				
	LC glossy dark green & yellow				
B7	LC dull green & yellow				
	LC leathery dark green & yellow				
B8	LC leathery dark greenCastanopsis tribuloides				

Table 3.10 Key B; Leaves (July 2018). For abbreviations see Table 2.4e 2.4

Figure 3.13 Flow chart of leaf dichotomous keys (July 2018)

Table 3.11 Key B; Leaves (August 2018). For abbreviations see Table 2.4

B 1	Leaf type simple \rightarrow B2; compound \rightarrow B3				
B2	LA alternate-spiral \rightarrow B4; bundled \rightarrow Key B5				
B3	LA paripinnate, LS lanceolate with tapering end, LC light greenish				
	yellowChoerospondias axillaris				
	LA imparipinnate, LS narrowly ovate with tapering end, LC dull				
	greenToona ciliata				
B4	LS ovate \rightarrow B6; elliptic \rightarrow B7; lanceolate \rightarrow B8; ovate-oblong, LC bright shiny				
	green Prunus cerasoides				
B5	LS needle-like, LC dark greenPinus kesiya				
B6	LC leathery dark green with prominent midrib				
	LC glossy dark green				
B7	LC dull green & yellowCastanopsis calathiformis				
	LC leathery dark green & yellow				
B8	LC leathery dark green				

Figure 3.14 Flow chart of leaf dichotomous keys (August 2018)

Leaf type is simple \rightarrow B2; compound \rightarrow B3 **B1** LA alternate-spiral \rightarrow B4; bundled \rightarrow B5 **B2 B3** LA paripinnate, LS lanceolate with tapering end, LC light greenish yellow...... Choerospondias axillaris LA imparipinnate, LS narrowly ovate with tapering end, LC is dull

Table 3.12 Key B; Leaves (September 2018). For abbreviations see Table 2.4

B4

B5	LS needle-like, LC dark green	Pinus kesiya
B6	LC leathery dark green with prominent midrib	Ficus altissima
	LC is glossy dark green	Artocarpus gomezianus
B7	LC dull green & yellow	Castanopsis calathiformis
	LC leathery dark green & brown	Magnolia garrettii
B8	LC leathery dark green	Castanopsis tribuloides

LS ovate \rightarrow B6; elliptic \rightarrow B7; lanceolate \rightarrow B8; ovate-oblong, LC bright green

and yellow......Prunus cerasoides

Figure 3.15 Flow chart of leaf dichotomous keys (September 2018)

Table 3.13 Key B; Leaves (October 2018). For abbreviations see Table 2.4

B 1	If leaf type is simple \rightarrow B2; compound \rightarrow B3			
B2	LA alternate-spiral \rightarrow B4; bundled \rightarrow B5			
B3	LA paripinnate, LS lanceolate with tapering end, LC is light greenish			
	yellowChoerospondias axillaris			
	LA imparipinnate, LS narrowly ovate with tapering end, LC dull			
	green Toona ciliata			
B4	LS ovate \rightarrow B6; elliptic \rightarrow B7; lanceolate \rightarrow B8; ovate-oblong, LC green &			
	yellow Prunus cerasoides			
B5	LS needle-like, LC dark green <i>Pinus kesiya</i>			
B6	LC leathery dark green with prominent midribFicus altissima			
	LC glossy dark greenArtocarpus gomezianus			
B7	LC dull green & yellow			
	LC leathery dark green & brown			
B8	LC leathery dark greenCastanopsis tribuloides			

Figure 3.16 Flow chart of leaf dichotomous keys (October 2018)

Table 3.14 Key B; Leaves (November 2018). For abbreviations see Table 2.4

B1	If leaf type is simple \rightarrow B2; compound \rightarrow Key B3			
B2	LA alternate-spiral \rightarrow B4; bundled \rightarrow B5			
B3	LA paripinnate, LS lanceolate with tapering end, LC is light green &			
	yellowChoerospondias axillaris			
	LA imparipinnate, LS narrowly ovate with tapering end, LC dull green &			
	yellow Toona ciliata			
B4	LS ovate \rightarrow B6; elliptic \rightarrow B7; lanceolate \rightarrow B8; ovate-oblong, LC green &			
	yellowPrunus cerasoides			
B5	LS needle-like, LC dark green <i>Pinus kesiya</i>			
B6	LC leathery bright green with prominent midribFicus altissima			
	LC glossy dark green			
B7	LC dull green & yellow			
	LC leathery dark green & brown			
B8	LC leathery dark green Castanopsis tribuloides			

Figure 3.17 Flow chart of leaf dichotomous keys (November 2018)

Table 3.15 Key B; Leaves (December 2018). For abbreviations see Table 2.4

B 1	If leaf type is simple \rightarrow B2; compound \rightarrow B3					
B2	LA alternate-spiral \rightarrow B4; bundled \rightarrow B5					
B3	LA paripinnate, LS lanceolate with tapering end, LC yellowish					
	greenChoerospondias axillaris					
	LA imparipinnate, LS narrowly ovate with tapering end, LC dull green &					
	yellowToona ciliata					
B4	LS ovate \rightarrow B6; elliptic \rightarrow B7; lanceolate \rightarrow B8; ovate-oblong, LC yellowish					
	green Drumus carasoidas					
	green					
B5	LS needle-like, LC dark green <i>Pinus kesiya</i>					
B5 B6	LS needle-like, LC dark green <i>Pinus kesiya</i> LC leathery bright green with prominent midrib <i>Ficus altissima</i>					
B5 B6	LS needle-like, LC dark green					
B5 B6 B7	LS needle-like, LC dark green					
B5 B6 B7	LS needle-like, LC dark green					
B5 B6 B7 B8	LS needle-like, LC dark green					

Figure 3.18 Flow chart of leaf dichotomous keys (December 2018)

Table 3.16 Key B; Leaves (January 2019). For abbreviations see Table 2.4

B 1	If leaf type simple \rightarrow B2; compound \rightarrow B3				
B2	LA alternate-spiral \rightarrow B4; bundled \rightarrow B5				
B3	LA paripinnate, LS lanceolate with tapering end, LC yellowish				
	green Choerospondias axillaris				
	LA imparipinnate, LS narrowly ovate with tapering end, LC dull green &				
	yellowToona ciliata				
B4	LS ovate \rightarrow B6; elliptic \rightarrow B7; lanceolate \rightarrow B8; ovate-oblong, LC yellowish				
	greenPrunus cerasoides				
B5	LS needle-like, LC dark green <i>Pinus kesiya</i>				
B6	LC leathery bright green with prominent midribFicus altissima				
	LC glossy dark green				
B7	LC dull green & yellow				
	LC leathery dark green & brown				
B8	LC leathery dark greenCastanopsis tribuloides				

Figure 3.19 Flow chart of leaf dichotomous keys (January 2019)

3. Image J filtering keys

Figure 3.20 Image J filtered images for tree crowns (circled) of nine tree species studied in Ban Mae Sa Mai, Doi Suthep-Pui National Park, Thailand, (1) *Artocarpus gomezianus,* (2) *Castanopsis calathiformis,* (3) *Castanopsis tribuloides,* (4) *Choerospondias axillaris,* (5) *Ficus altissima,* (6) *Magnolia garrettii,* (7) *Pinus kesiya,* (8) *Prunus cerasoides,* (9) *Toona ciliata*

The monthly image filtering keys for nine target species is presented in following paragraphs. The image J filtering keys have two sets of numerical data i.e. upper and lower value for Hue, Saturation and Brightness (HSB). For some of the months, the image filtering keys for species are presented as range. This is because more than one crown was used in order to develop the image filtering keys; therefore, variation in upper and lower values of HSB within species were reported in range.

Figure 3.21 Artocarpus gomezianus image filtering keys

Figure 3.22 Castanopsis calathiformis image filtering keys

Figure 3.23 Castanopsis tribuloides image filtering keys

*Darker bars represent where range of lower and upper values overlap, and lighter bars represents where they do not overlap

Figure 3.24 Choerospondias axillaris image filtering keys

Figure 3.25 Ficus altissima image filtering keys

Figure 3.26 Magnolia garrettii image filtering keys

89

Figure 3.27 Pinus kesiya image filtering keys

Figure 3.28 Prunus cerasoides image filtering keys

Figure 3.29 *Toona ciliata* image filtering keys

4. Monthly Tree Species Identification Keys

4.1. Artocarpus gomezianus

Table 3.17 Artocarpus gomezianus (June 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT			
(Key A)	rough, CC light greenish yellow			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC glossy dark green and			
	yellow			
Image J keys (Key C)	Hue: 70-80/135 Sat: 40-60/95-116 Bright: 127-159/255			
Phenology	Leaf flushing			

Table 3.18 Artocarpus gomezianus (July 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT			
(Key A)	rough, CC light greenish yellow			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC glossy dark green and			
	yellow			
Image J keys (Key C)	Hue: 40-70/103-115	Sat: 0-40/65-115	Bright: 95-140/245-255	
Phenology	Leaf flushing			

Table 3.19 Artocarpus gomezianus (August 2018)

Key descriptors	Key description	n	
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT		CS Oval, CM Crenulated, FT
(Key A)	rough, CC dark	green	
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC glossy dark green		
Image J keys (Key C)	Hue: 60/95	Sat: 10-20/65	Bright: 130-145/ 235-255
Phenology			

Table 3.20 Artocarpus gomezianus (September 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT		
(Key A)	rough, CC dull green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC glossy dark green		
Image J keys (Key C)	Hue: 49-70/96-126 Sat: 1/77 Bright: 1	17-122/255	
Phenology			

 Table 3.21 Artocarpus gomezianus (October 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT		
(Key A)	rough, CC dull green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC glossy dark green		
Image J keys (Key C)	Hue: 40-60/74-94 Sat: 0/54-64 Bright: 117-143/255		
Phenology			

 Table 3.22 Artocarpus gomezianus (November 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT			
(Key A)	rough, CC dull green with yellow spots			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC glossy dark green			
Image J keys (Key C)	Hue: 0-50/85-95 Sat: 0/65 Bright: 125-142/255			
Phenology				

 Table 3.23 Artocarpus gomezianus (December 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT		
(Key A)	rough, CC dull green		
Leaf keys (Key B)	LT simple, LA alternate s	piral, LS ovate	e, LC glossy dark green
Image J keys (Key C)	Hue: 40-45/82-94 Sat: 1/65 Bright: 112-122/255		
Phenology			

 Table 3.24 Artocarpus gomezianus (January 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS More rounded, HCS Oval, CM Crenulated, FT		
(Key A)	rough, CC dull green		
Leaf keys (Key B)	LT simple, LA alternate spi	iral, LS ovate, L	C glossy dark green
Image J keys (Key C)	Hue: 0-41/69-109	Sat: 0/75	Bright: 110/255
Phenology			

4.2. Castanopsis calathiformis

Table 3.25Castanopsis calathiformis (June 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS M	CT Single, VCS More rounded, HCS Oval, CM Entire, FT rough,		
(Key A)	CC dull green			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green and			
	yellow			
Image J keys (Key C)	Hue: 0/80-115	Sat: 0/65-101	Bright: 128-141/255	
Phenology	Flowering			

 Table 3.26 Castanopsis calathiformis (July 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS Mo	CT Single, VCS More rounded, HCS Oval, CM Entire, FT rough,		
(Key A)	CC yellowish dull green			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green and			
	yellow			
Image J keys (Key C)	Hue: 0/80-115	Sat: 0/65-101	Bright: 128-141/255	
Phenology	Flowering			

 Table 3.27
 Castanopsis calathiformis (August 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS	More rounded, HCS O	val, CM Entire, FT rough,	
(Key A)	CC brownish green			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green and			
	yellow			
Image J keys (Key C)	Hue: 40/89	Sat: 40/84-165	Bright: 110-122/255	
Phenology	Flowering			

 Table 3.28 Castanopsis calathiformis (September 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS Mo	CT Single, VCS More rounded, HCS Oval, CM Entire, FT rough,		
(Key A)	CC dull green			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green			
	and yellow			
Image J keys (Key C)	Hue: 0-87/66-127	Sat: 0-60/107-137	Bright: 107-137/255	
Phenology				

Table 3.29 Castanopsis calathiformis (October 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS More	rounded, HCS Oval, C	M Entire, FT rough,
(Key A)	CC dull green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green and		
	yellow		
Image J keys (Key C)	Hue: 40-71/75-103	Sat: 30/68-78	Bright: 146/255
Phenology			

Table 3.30 Castanopsis calathiformis (November 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS More	e rounded, HCS Oval, C	CM Entire, FT rough,
(Key A)	CC dull green with yellow spots		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green and		
	yellow		
Image J keys (Key C)	Hue: 30/76-112	Sat: 10/93-103	Bright: 125/255
Phenology			

Table 3.31 Castanopsis calathiformis (December 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS More	CT Single, VCS More rounded, HCS Oval, CM Entire, FT rough,		
(Key A)	CC dull green with yellow patches			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green and			
	yellow			
Image J keys (Key C)	Hue: 50/72-135	Sat: 0/95-145	Bright: 110-122/255	
Phenology				

Key descriptors	Key description			
Tree crown keys	CT Single, VCS More	CT Single, VCS More rounded, HCS Oval, CM Entire, FT rough,		
(Key A)	CC dull green with yellow patches			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green and			
	yellow			
Image J keys (Key C)	Hue: 0/61-81	Sat: 0-50/74-126	Bright: 90-100/255	
Phenology				

 Table 3.32
 Castanopsis calathiformis (January 2019)

4.3. Castanopsis tribuloides

Table 3.33	Castanopsis	tribuloides	(June 2018)
	-		· /

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Slightly rounded, HCS Round, CM Entire, FT		
(Key A)	smooth, CC brownish green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark		
	green		
Image J keys (Key C)	Hue: 0/95	Sat: 0/75-95	Bright: 113/255
Phenology	Flowering		

Table 3.34Castanopsis tribuloides (July 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Slightly rounded, HCS Round, CM Entire, FT		
(Key A)	smooth, CC brownish green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark		
	green		
Image J keys (Key C)	Hue: 40/85	Sat: 0-40/85	Bright: 140/255
Phenology	Flowering		

 Table 3.35
 Castanopsis tribuloides (August 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Slightly rounded, HCS Round, CM Entire, FT		
(Key A)	smooth, CC brownish green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark		
	green		
Image J keys (Key C)	Hue: 40/87	Sat: 0-20/65-105	Bright: 130/255
Phenology	Flowering		

Table 3.36 Castanopsis tribuloides (September 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Slightly rounded, HCS Round, CM Entire, FT		
(Key A)	smooth, CC bright green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark		
	green		
Image J keys (Key C)	Hue: 50/98-255	Sat: 80/255	Bright: 122/255
Phenology	Leaf flushing		

 Table 3.37 Castanopsis tribuloides (October 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Slightly rounded, HCS Round, CM Entire, FT		
(Key A)	smooth, CC light green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark		
	green		
Image J keys (Key C)	Hue: 50/85	Sat: 50/98	Bright: 140/255
Phenology	Leaf flushing		

Key descriptors	Key description		
Tree crown keys	CT Single, CS rounded, FT smooth, CC light green with yellow		
(Key A)	patches		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark		
	green		
Image J keys (Key C)	Hue: 40/85	Sat: 0/109	Bright: 128/255
Phenology			

 Table 3.38 Castanopsis tribuloides (November 2018)

 Table 3.39 Castanopsis tribuloides (December 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS Slightly rounded, HCS Round, CM Entire, FT			
(Key A)	smooth, CC bright green			
L	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark			
Leai keys (Key D)	green			
Image J keys (Key C)	Hue: 0/69	Sat: 49/255	Bright: 110/255	
Phenology	Leaf flushing			

Table 3.40Castanopsis tribuloides (January 2019)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS Slightly rounded, HCS Round, CM Entire, FT			
(Key A)	smooth, CC bright green			
Loof have (Voy D)	LT simple, LA alternate spiral, LS lanceolate, LC leathery dark			
Leai keys (key D)	green			
Image J keys (Key C)	Hue: 40/73-83	Sat: 50/255	Bright: 50-120/255	
Phenology	Leaf flushing			

4.4. Choerospondias axillaris

Key descriptors	Key description		
Tree crown keys	CT multiple, VCS Flat	, HCS Elongated, FT s	mooth, CC light green
(Key A)	with yellow spots		
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end,		
	LC light greenish yellow		
Image J keys (Key C)	Hue: 0-70/46-115	Sat: 0-30/85-255	Bright: 129-146/255
Phenology	Leaf flushing		

 Table 3.41 Choerospondias axillaris (June 2018)

Table 3.42Choerospondias axillaris (July 2018)

Key descriptors	Key description		
Tree crown keys	CT multiple, VCS Flat, HCS Elongated, FT smooth, CC light green		
(Key A)	with yellow spots		
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end,		
	LC light greenish yellow		
Image J keys (Key C)	Hue: 30-70/70-115	Sat: 40-58/80-115	Bright: 70-130/255
Phenology	Leaf flushing		

Table 3.43 Choerospondias axillaris (August 2018)

Key descriptors	Key description		
Tree crown keys	CT multiple, VCS Flat, HCS Elongated, FT smooth, CC light green		
(Key A)	with yellow spots		
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end, LC		
	light greenish yellow		
Image J keys (Key C)	Hue: 0-50/79-89	Sat: 20-50/92-132	Bright: 128-144/255
Phenology			

Kay descriptors	Kov description		
Key descriptors	Key description		
Tree crown keys	CT multiple, VCS Flat, HCS Elongated, FT smooth, CC light green		
(Key A)	with yellow spots		
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end, LC		
	light greenish yellow		
Image J keys (Key C)	Hue: 19-47/64-78	Sat: 0-30/75-255	Bright:197-130/255
Phenology			

 Table 3.44 Choerospondias axillaris (September 2018)

 Table 3.45 Choerospondias axillaris (October 2018)

Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Flat	CT multiple, VCS Flat, HCS Elongated, FT smooth, CC light green		
(Key A)	with yellow spots	with yellow spots		
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end, LC			
	light greenish yellow			
Image J keys (Key C)	Hue: 39/59-79	Sat: 20-40/122	Bright: 154-162/255	
Phenology	Leaf fall (Crown density=1/4)			

 Table 3.46 Choerospondias axillaris (November 2018)

Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Fla	CT multiple, VCS Flat, HCS Elongated, FT smooth, CC light green		
(Key A)	with yellow spots	with yellow spots		
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end, LC			
	light greenish yellow			
Image J keys (Key C)	Hue: 0-60/60-80	Sat: 0-50/114-144	Bright: 126-135/255	
Phenology	Leaf fall (Crown density = $1/2$)			

Kay descriptors	Koy description			
Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Fla	CT multiple, VCS Flat, HCS Elongated, FT smooth, CC visible		
(Key A)	branches with almost all leaves shed			
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end, LC			
	yellowish green			
Image J keys (Key C)	Hue: 0-40/55-94	Sat: 30-60/80-255	Bright: 80-90/255	
Phenology	Leaf fall (Crown density=3/4)			

Table 3.47 Choerospondias axillaris (December 2018)

 Table 3.48 Choerospondias axillaris (January 2019)

Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Flat, HCS Elongated, FT smooth, CC visible			
(Key A)	branches with almost a	branches with almost all leaves shed		
Leaf keys (Key B)	LT compound, LA paripinnate, LS lanceolate with tapering end, LC			
	yellowish green			
Image J keys (Key C)	Hue: 10-40/59	Sat: 10-40/51-91	Bright: 80-110/255	
Phenology	Leaf fall (Crown density=0)			

4.5. Ficus altissima

Table 3.49 Ficus altissima (June 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Flat	, HCS Oval, CM Entire	e, FT smooth, CC dark
(Key A)	green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery dark green		
	with prominent midrib		
Image J keys (Key C)	Hue: 47/81	Sat: 0/135-255	Bright: 121/255
Phenology	Leaf flushing		

Table 3.50 Ficus altissima (July 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS Flat, HCS Oval, CM Entire, FT smooth, CC dark			
(Key A)	green with yellow spo	green with yellow spots		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery dark green			
	with prominent midrib			
Image J keys (Key C)	Hue: 70/155	Sat: 0/103-164	Bright: 99-124/255	
Phenology	Flowering			

Table 3.51 Ficus altissima (August 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS Flat,	CT Single, VCS Flat, HCS Oval, CM Entire, FT smooth, CC dark		
(Key A)	green with yellow spo	green with yellow spots		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery dark green			
	with prominent midrib			
Image J keys (Key C)	Hue: 60/105	Sat: 20/65-113	Bright: 123/255	
Phenology				

 Table 3.52 Ficus altissima (September 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Flat	t, HCS Oval, CM Ent	tire, FT smooth, CC dark
(Key A)	green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery dark green		
	with prominent midrib		
Image J keys (Key C)	Hue: 70/135-255	Sat: 0/115-255	Bright: 143/255
Phenology			

Table 3.53 Ficus altissima (October 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS Flat	CT Single, VCS Flat, HCS Oval, CM Entire, FT smooth, CC dark		
(Key A)	green			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery dark green			
	with prominent midrib			
Image J keys (Key C)	Hue: 60/73-90	Sat: 26-60/100-137	Bright: 125-133/255	
Phenology				

Table 3.54 Ficus altissima (November 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Flat, HCS Oval, CM Entire, FT smooth, CC bright		
(Key A)	green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery bright green		
	with prominent midrib		
Image J keys (Key C)	Hue: 30-50/105-142 Sat: 84-94/255 Bright: 116/255		
Phenology	Leaf flushing		

Table 3.55 Ficus altissima (December 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS Flat	, HCS Oval, CM Entir	re, FT smooth, CC bright
(Key A)	green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery bright green		
	with prominent midrib		
Image J keys (Key C)	Hue: 50/120-255	Sat: 80-90/255	Bright: 100-110/255
Phenology			

Table 3.56 Ficus altissima (January 2019)

Key descriptors	Key description		
Tree crown keys (Key	CT Single, VCS Flat, HCS Oval, CM Entire, FT smooth, CC bright		
A)	green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS ovate, LC leathery bright green		
	with prominent midrib		
Image J keys (Key C)	Hue: 60/77	Sat: 28-78/255	Bright: 50-119/255
Phenology			

4.6. Magnolia garrettii

Table 3.57 Magnolia garrettii (June 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC		
(Key A)	dark green with yellow patches		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green		
Image J keys (Key C)	Hue: 50-80/90-155	Sat: 30-60/85-127	Bright: 141/255
Phenology	Fruiting		

Table 3.58 Magnolia garrettii (July 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC		
(Key A)	dark green with yellow patches		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green		
	and yellow		
Image J keys (Key C)	Hue: 40-80/100-145 Sat: 0-90/85-255 Bright: 125/255		
Phenology	Fruiting		
Table 3.59 Magnolia garrettii (August 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC		
(Key A)	dark green with yellow patches		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green		
	and yellow		
Image J keys (Key C)	Hue: 80/255	Sat: 0/145-255	Bright: 125-147/255
Phenology	Fruiting		

Table 3.60 Magnolia garrettii (September 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC		
(Key A)	dark green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green		
	and yellow		
Image J keys (Key C)	Hue: 50/98-255 Sat: 80/255 Bright: 122/255		
Phenology			

Table 3.61 Magnolia garrettii (October 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC		
(Key A)	dark green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green and yellow		
Image J keys (Key C) Phenology	Hue: 40-70/70-115	Sat: 40-50/75-85	Bright: 110-155/255

Table 3.62 Magnolia garrettii (November 2018)

Key descriptors	Key description		
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC		
(Key A)	dark green		
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green		
	and yellow		
Image J keys (Key C)	Hue: 50-70/80-103 Sat: 0-50/81-145 Bright: 107-128/255		
Phenology			

 Table 3.63 Magnolia garrettii (December 2018)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC			
(Key A)	dark green			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green			
	and yellow			
Image J keys (Key C)	Hue: 30-52/70-92 Sat: 0-50/113-145 Bright: 79-110/255			
Phenology	Leaf fall (Crown density=1/4)			

Table 3.64 Magnolia garrettii (January 2019)

Key descriptors	Key description			
Tree crown keys	CT Single, VCS rounded, HCS Oval, CM Entire, FT smooth, CC			
(Key A)	dark green			
Leaf keys (Key B)	LT simple, LA alternate spiral, LS elliptic, LC leathery dark green			
	and yellow			
Image J keys (Key C)	Hue: 10-60/75-100 Sat: 40-70/104-255 Bright: 70-100/255			
Phenology	Leaf fall (Crown density=1/4)			

4.7. Pinus kesiya

Table 3.65	Pinus kos	viva (June	2018)
Table 5.05	Pinus kes	<i>aya</i> (June	2010)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 50/70-95 Sat: 30-60/125-137 Bright: 125-147/255		
Phenology			

Table 3.66 Pinus kesiya (July 2018)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 50-60/80-93 Sat: 50-80/120-135 Bright: 116-143/255		
Phenology			

Table 3.67 Pinus kesiya (August 2018)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 60/90 Sat: 40-60/122 Bright: 132-140/255		
Phenology			

Table 3.68 Pinus kesiya (September 2018)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 49-60/85-88 Sat: 40-70/135-158 Bright: 113-121/255		
Phenology			

Table 3.69 Pinus kesiya (October 2018)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 40-50/80 Sat: 60-70/105-125 Bright: 148-151/255		
Phenology			

Table 3.70 Pinus kesiya (November 2018)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 20-40/100-120 Sat: 40-50/125 Bright: 122-135/255		
Phenology			

Table 3.71 Pinus kesiya (December 2018)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 0-40/79 Sat: 40-70/123-183 Bright: 30-60/255		
Phenology			

Table 3.72 Pinus kesiya (January 2019)

Key descriptors	Key description		
Tree crown keys	CT Multiple, VCS More rounded, CM Elongated, FT rough, CC		
(Key A)	dark green with black spots		
Leaf keys (Key B)	LT simple, LA bundled, LS Needle-like, LC leathery dark green		
Image J keys (Key C)	Hue: 0-28/73-93 Sat: 70/112-142 Bright: 110/255		
Phenology			

4.8. Prunus cerasoides

Table 3.73 Prunus cerasoides (June 20)18`	۱
---------------------------------------	------	---

Key descriptors	Key description		
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT		
(Key A)	smooth, CC bright green with yellow spots		
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC shiny bright green		
Image J keys (Key C)	Hue: 0/62-102 Sat: 48/146-255 Bright: 77-110/255		
Phenology	Leaf flushing		

Table 3.74 Prunus cerasoides (July 2018)

Key descriptors	Key description		
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT		
(Key A)	smooth, CC bright green with yellow spots		
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC shiny bright green		
Image J keys (Key C)	Hue: 0-60/75-82	Sat: 60-70/143-169	Bright: 93-119/255
Phenology	Leaf flushing		

Table 3.75 Prunus cerasoides (August 2018)

Key descriptors	Key description		
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT		
(Key A)	smooth, CC bright green with visible branches		
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC shiny bright green		
Image J keys (Key C)	Hue: 10-50/85 Sat: 40-60/100-145 Bright: 93-100/255		
Phenology			

Table 3.76 Prunus cerasoides (September 2018)

Key descriptors	Key description			
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT			
(Key A)	smooth, CC bright green with visible branches			
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC shiny bright green			ht green
Image J keys (Key C)	Hue: 60/87-107	Sat: 40-50/95-255	Bright:	50-60/87-
			107	
Phenology				

Table 3.77 Prunus cerasoides (October 2018)

Key descriptors	Key description			
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT			
(Key A)	smooth, CC yellowish green with visible branches			
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC yellowish green			
Image J keys (Key C)	Hue: 0-60/75-85 Sat: 30-40/76 Bright: 110/255			
Phenology	Leaf fall (Crown density=1/4)			

Table 3.78 Prunus cerasoides (November 2018)

Key descriptors	Key description			
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT			
(Key A)	smooth, CC light green with visible branches			
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC yellowish green			
Image J keys (Key C)	Hue: 10-60/62-92 Sat: 30-40/76-96 Bright: 110/255			
Phenology	Leaf fall (Crown density=1/2)			

Table 3.79 Prunus cerasoides (December 2018)

Key descriptors	Key description		
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT		
(Key A)	smooth, CC branches visible almost all leaves shed		
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC yellowish green		
Image J keys (Key C)	Hue: 20-40/75 Sat: 0/80-90 Bright: 110/255		
Phenology	Leaf fall (Crown density=3/4)		

Table 3.80 Prunus cerasoides (January 2019)

Key descriptors	Key description			
Tree crown keys	CT single, VCS More rounded, HCS Elongated, CM Entire, FT			
(Key A)	smooth, CC branches visible with pink flowers			
Leaf keys (Key B)	LT simple, LA bundled, LS ovate-oblong, LC yellowish green			
Image J keys (Key C)	Hue: 30/82-92 Sat: 20-50/68-88 Bright: 110/255			
Phenology	Leaf fall (Crown density=0); Flowering			

4.9. Toona ciliata

Table 3.81 Toona ciliata (June 2018)

Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Fla	CT multiple, VCS Flat, HCS Irregular, FT rough, CC dull green with		
(Key A)	yellow spots			
Loof Love (Koy P)	LT compound, LA in	nparipinnate, LS narro	owly ovate with tapering	
Leal Reys (Rey D)	end, LC bright green			
Image J keys (Key C)	Hue: 50/95 Sat: 80-130/255 Bright: 106-151/25			
Phenology	Leaf flushing			

Table 3.82 Toona ciliata (July 2018)

Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Flat, HCS Irregular, FT rough, CC dull green with			
(Key A)	yellow spots			
	LT compound, LA imparipinnate, LS narrowly ovate with tapering			
Lear Reys (Rey D)	end, LC bright green			
Image J keys (Key C)	Hue: 38-80/255 Sat: 50-80/255 Bright: 113-134/25			
Phenology	Leaf flushing			

Table 3.83 Toona ciliata (August 2018)

Key descriptors	Key description		
Tree crown keys	CT multiple, VCS Flat, HCS Irregular, FT rough, CC dull green		
(Key A)			
Leaf keys (Key B)	LT compound, LA imparipinnate, LS narrowly ovate with tapering		
	end, LC dull green		
Image J keys (Key C)	Hue: 88/135	Sat: 0/124-159	Bright: 113-144/255
Phenology	Leaf flushing		

Table 3.84Toona ciliata (September 2018)

Key descriptors	Key description				
Tree crown keys	CT multiple, VCS Flat, HCS Irregular, FT rough, CC				
(Key A)	dull green				
Leaf keys	LT compound, LA imparipinnate, LS narrowly ovate with				
(Key B)	tapering end, LC dull green				
Image J keys (Key C)	Hue: 60/136-249 Sat: 0/95-255 Bright: 124-147/255				
Phenology					

 Table 3.85
 Toona ciliata (October 2018)

Key descriptors	Key description				
Tree crown keys	CT multiple, VCS Flat, HO	CT multiple, VCS Flat, HCS Irregular, FT rough, CC dull green with			
(Key A)	yellow patches & visible branches				
Leaf keys	LT compound, LA imparipinnate, LS narrowly ovate with tapering				
(Key B)	end, LC dull green				
Image J keys (Key C)	Hue: 9-30/85-110 Sat: 0/63 Bright: 134/255				
Phenology	Leaf fall (Crown density=1/4)				

Table 3.86 Toona ciliata (November 2018)

Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Flat, HCS Irregular, FT rough, CC dull green with			
(Key A)	yellow patches & visible branches			
Leaf keys	LT compound, LA imparipinnate, LS narrowly ovate with tapering			
(Key B)	end, LC dull green			
Image J keys (Key C)	Hue: 32-40/65-85 Sat: 30-60/112-255 Bright: 90-134/255			
Phenology	Leaf shed (Crown density=1/2)			

Table 3.87 Toona ciliata (December 2018)

Key descriptors	Key description			
Tree crown keys	CT multiple, VCS Fla	at, HCS Irregular, FT rou	igh, CC dull green with	
(Key A)	yellow patches & visible branches			
Leaf keys	LT compound, LA imparipinnate, LS narrowly ovate with tapering			
(Key B)	end, LC dull green			
Image J keys (Key C)	Hue: 12-40/65-85 Sat: 30-60/112-255 Bright: 60-110/255			
Phenology	Leaf fall (Crown density=3/4)			

 Table 3.88
 Toona ciliata (January 2019)

Key descriptors	Key description		
Tree crown keys	CT multiple, VCS Flat, HCS Irregular, FT rough, CC dull green with		
(Key A)	yellow patches & visible branches		
Leaf keys	LT compound, LA imparipinnate, LS narrowly ovate with tapering		
(Key B)	end, LC dull green		
Image J keys (Key C)	Hue: 0/53-64 Sat: 10-40/85-255 Bright: 90-110/255		
Phenology	Leaf fall (Crown density=0)		

5. Results of Tree Species Identification by Photo-interpretation

5.1. Overall Tree Species Identification Accuracy

The overall tree species identification accuracy results are presented as follows:

Figure 3.30 Overall Tree Species Identification Accuracy (high to low % F)

Overall tree species identification accuracy ranged from 27% to 100%. On average, more than 70% of the trees of 4 species: *Pinus kesiya, Choerospondias axillaris Magnolia garrettii & Artocarpus gomezianus* were correctly identified, whilst 50-70 % of the trees of 3 species: *Ficus altissima, Castanopsis tribuloides & Toona ciliata were* correctly identified. Only two species: *Castanopsis calathiformis & Prunus cerasoides* had mean identification success rates of 50% or less.

Pinus kesiya was most correctly identified at 100% identification accuracy and *Prunus cerasoides* with 27% was the least accurately identified. The highest % error of omission (O) and commission (C) was committed for *Prunus cerasoides* (Figure 3.30).

	Species	% Found	% Error of Omission	% Error of Commission
Chi-Square	123.552	18276.926	18276.926	33801.854
df	8	20	20	18
Asymp. Sig.	.000	.000	.000	.000

Table 3.89 Chi-Square test results for overall tree species identification accuracy

The correlation between tree species, % found, % error of omission and % error of commission is presented in Table 3.90.

Table 3.90Correlation between Tree species, % Found, % Error of Omission and %Error of Commission

	% Found	% Error of Omission	% Error of Commission
% Found	1		
% Error of Omission	-1.000(**)	1	
% Error of Commission	381(**)	.381(**)	1

**Correlation is significant at the 0.01 level (2-tailed).

5.2. Overall Monthly Tree Species Identification Accuracy

The overall tree species identification accuracy was above 70% for the months July, August and October 2018. For the months of September, November, December 2018 and January 2019; the identification accuracy ranged between 55% to 70%.

The % error of omission (O) was highest in the month of January 2019 and lowest for July 2018. The % error of commission (C) was highest in the month of December and lowest for July 2018 (Figure 3.31).

	Months	% Found	% Error of Omission	% Error of Commission
Chi-Square	222.908	37249.529	37249.529	43434.454
df	6	19	19	16
Asymp. Sig.	.000	.000	.000	.000

Table 3.91 Chi-Square test results for monthly tree species identification accuracy

The correlation between months, % found, % error of omission and % error of commission is presented in Table 3.92.

Table 3.92 Correlation between Months, % Found, % Error of Omission and % Error ofCommission

	%Found	% Error of Omission	% Error of Commission
% Found	1		
% Error of Omission	-1.000(**)	1	
% Error of Commission	140(**)	.140(**)	1

**Correlation is significant at the 0.01 level (2-tailed).

5.3. Species-wise Monthly Identification Accuracy

Species varied in the distinctiveness due to seasonal changes in their appearance due to flowering, leaf flush, phenology, etc. The results presented in this part shows, how identifiability changed with season and when each species was most identifiable. The months when the species were identified with highest identification accuracy are marked in bold with asterisk and are presented in Table 3.93. Those months marked with asterisk are recommended months to look for species using the approach developed in this study.

SN	Species	Validation	Jan	Jul	Aug	Sep	Oct	Nov	Dec
1	Artocarpus gomezianus	% Found	40.0	80.0	79.6	75.0	87.5*	75.0	75.0
		% Error of Omission	60.0	20.0	20.4	25.0	12.5	25.0	25.0
		% Error of Commission	20.0	0.0	10.4	0.0	12.5	25.0	150.0
2	Castanopsis calathiformis	% Found	0.0	100.0*	41.7	-	59.8	41.7	10.0
		% Error of Omission	100.0	0.0	58.3	-	40.2	58.3	90.0
		% Error of Commission	0.0	100.0	36.1	-	8.3	112.5	10.0
3	Castanopsis tribuloides	% Found	50.0	66.7	62.5	50.0	50.0	80.0	100.0*
		% Error of Omission	50.0	33.3	37.5	50.0	50.0	20.0	0.0
		% Error of Commission	50.0	0.0	0.0	50.0	166.7	40.0	0.0
4	Choerospondias axillaris	% Found	100.0*	100.0*	100.0*	83.3	100.0*	91.1	96.2
		% Error of Omission	0.0	0.0	0.0	16.7	0.0	8.9	3.8
		% Error of Commission	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	Ficus altissima	% Found	33.3	50.0	100.0*	100.0*	100.0*	33.3	83.3
		% Error of Omission	66.7	50.0	0.0	0.0	0.0	66.7	16.7
		% Error of Commission	83.3	150.0	0.0	133.3	100.0	66.7	166.7

Table 3.93 Species-wise Monthly Identification Accuracy

*Highest identification accuracy and recommended months to look for the species

99

Table 3.93 (Continued)

SN	Species	Validation	Jan	Jul	Aug	Sep	Oct	Nov	Dec
6	Magnolia garrettii	% Found	57.1	88.9	63.3	92.9	62.5	100.0*	55.6
		% Error of Omission	42.9	11.1	36.7	7.1	37.5	0.0	44.4
		% Error of Commission	42.9	5.6	0.0	7.1	0.0	0.0	11.1
7	Pinus kesiya	% Found	100.0*	100.0*	100.0*	100.0*	100.0*	100.0*	100.0*
		% Error of Omission	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		% Error of Commission	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	Prunus cerasoides	% Found	100.0*	0.0	66.7	0.0	0.0	0.0	0.0
		% Error of Omission	0.0	100.0	33.3	100.0	100.0	100.0	100.0
		% Error of Commission	0.0	400.0	133.3	50.0	100.0	500.0	50.0
9	Toona ciliata	% Found	0.0	66.7	83.3	66.7	66.7	75.0*	0.0
		% Error of Omission	100.0	33.3	16.7	33.3	33.3	25.0	100.0
		% Error of Commission	200.0	0.0	25.0	22.2	66.7	0.0	166.7

*Highest identification accuracy and recommended months to look for the species

Discussion

1. Tree Species Identification Accuracy

1.1. Tree species with Identification Accuracy of 100%

Pinus kesiya was the most correctly identified, at 100% identification accuracy and no errors of omission and commission (Figure 3.30). The high identification accuracy for *Pinus kesiya* was because it had the most distinctive and largest crowns, compared to other species. The trees were remnant mature trees, having grown up long before the framework species had been planted, which accounts for their emergent position in the forest canopy and their broad crowns. The whorls of needle leaves were very easily distinguished from the broad leaves of all the other species. *P. kesiya* is the only *Pinus* species in the area (Thailand's only other native *Pinus – P. merkusii –* is absent from the study site), so there was no opportunity to confuse it with any other species. Similar results were reported by Gonzalez-Orozco *et al.* (2010) and Garzon-Lopez *et al.* (2012) for palms trees, which looked very distinct compared to other tree families.

1.2. Tree species with Identification Accuracy of 75% to 95%

Choerospondias axillaris was identified with an accuracy of 95%. The error of omission was only 5% with no error of commission (Figure 3.30). *Magnolia garrettii* and *Artocarpus gomezianus* were both identified with an accuracy of 75% and error of omission was at 25%. The % error of commission for *Magnolia garrettii* was 7% and 22% for *Artocarpus gomezianus* (Figure 3.30). *Choerospondias axillaris, Magnolia garrettii* and *Artocarpus gomezianus* had relatively higher identification accuracy because they were the most abundant species (Table 2.5.) in the research plots (Gonzalez-Orozco *et al.*, 2010 and Garzon-Lopez *et al.*, 2012). However, this theory did not hold true for *Castanopsis calathiformis*; so therefore, other factors like uniqueness of crown and leaf characteristics might also have an influence on identification accuracy. *Magnolia garrettii* and *Artocarpus gomezianus* had larger leaves than those of other species, which might also have contributed to higher identification accuracy for these species (Figure 3.30).

1.3. Tree species with Identification Accuracy of 50% to 70%

Ficus altissima was identified with an accuracy of 67%, followed by *Castanopsis tribuloides* and *Toona ciliata*. The highest error of commission was committed for *Ficus altissima* at 109% followed by *Toona ciliata* and *Castanopsis tribuloides*. The error of omission was highest for *Toona ciliata* at 42%, followed by *Castanopsis tribuloides* and *Ficus altissima* (Figure 3.30). A very high error of commission in case of *Toona ciliata* was because most of the photo-interpreters misidentified it to be *Choerospondias axillaris*, as it looked very similar on photographs due to similar leaf type and arrangement.

One of the reasons for low identification accuracy of *Toona ciliata* was because it was a less abundant species. Similar findings were also reported by Gonzalez-Orozco *et al.* (2010) and Garzon-Lopez *et al.* (2012) for uncommon species.

1.4. Tree species with Identification Accuracy of 50% and below

Castanopsis calathiformis was identified at an accuracy of 45% followed by *Prunus cerasoides* at 27%. The error of omission was at 73% for *Prunus cerasoides* and 55% for *Castanopsis calathiformis*. The error of commission was 146% for *Prunus cerasoides* and 43% for *Castanopsis calathiformis* (Figure 3.30). One of the reasons for a very low identification accuracy and a very high % error of commission for *Prunus cerasoides* was because it was the rarest species in validation plot.

In addition, most of photo-interpreters committed high % error of commission for *Castanopsis calathiformis* as *Castanopsis tribuloides*. One of the reasons for this was because both of these species had similar looking crowns and leaf characteristics.

1.5. Phenology and Identification Accuracy

It was found that, the identification accuracy was highest for tree species at phenophases as presented below (Figure 3.31, Figure 3.32).

SN	Species	Month/year	Phenophase	Identification
				Accuracy (%)
1	Castanopsis calathiformis	July 2018	Flowering	100%
2	Choerospondias axillaris	January 2019	Leaf fall	100%
3	Prunus cerasoides	January 2019	Flowering	100%
4	Toona ciliata	August 2018	Leaf flushing	83%

 Table 3.94
 Phenology and Identification Accuracy

Our results were consistent to findings of Trichon & Julien (2006) and Garzon-Lopez *et al.* (2012) where they also reported that, tree species were easier to identify during the phenophases that were most visually striking.

Deciduous tree species presented a high % error of commission during dry season as all these species looked very similar with bare branches without leaves.

Figure 3.32 *Prunus cerasoides* flowering. Photographs of same tree crown taken in June 2018 (left) and in January 2019 (right).

2. Limitation and Challenges

2.1. Applicability of approach

Our approach to identify tree species works well only for species with tall trees, as the identification keys were developed based on visible upper layer of crowns. We assumed that crowns of taller species are only visible from top but however, we did not study any relationship in detail between the height of trees and identification accuracy. In addition, our approach is more suited for identification of abundant species except for *Castanopsis calathiformis* (Trichon *et al.*, 2006).

2.2. Inconsistencies in quality of digital aerial photographs

Certain inconsistencies in quality of digital aerial photographs were observed, which might have some influence in identification accuracy. These inconsistencies might have been because of inherent flaws in DJI Phantom Pro 4 camera and LITCHI app. In order to maintain uniformity in quality of all photographs, I used an identical autonomous flight plans and automatic camera setting for all our flights. However, for some months the photographs were over-exposed and with drift in position, away from the set coordinates. Weather, light conditions and light reflectance (Gonzalez-Orozco *et al.*, 2010) also contributed towards such inconsistencies.

2.3. Image geometric distortion

The angle of the image with respect to the ground causes image geometric distortion (Gonzalez-Orozco *et al.*, 2010). When the image axis was not completely vertical to the surface, objects appeared deformed – with tree tops pointing towards the edges or corners of the images. Excessive brightness (light reflectance) on the crown surface also complicated the recognition of the textural properties by eye. More specifically, high lateral light intensity created shadows, which reduced contrast and made it more difficult to identify the edges of the crowns. This affected visual judgement of the crowns that were located at the edge of photographs. Orthorectification and the construction of 3D (three-dimensional) models of the forest plots could overcome the distortion, but such orthorectified models lead to a drastic reduction in the detail visible in the images (e.g. individual leaves cannot be seen in 3D models) (Figure 3.33) and the software required

to perform such orthorectification (e.g. Pix4D) is still prohibitively expensive (around 350 USD/month).

2.4. Topographic variation

Topographic variation in landscape (Gonzalez-Orozco *et al.*, 2010) also complicated the aerial identification of tree crowns. While looking at digital aerial photographs, the variation in slope is not obvious to human eyes as these photographs are in 2D (two-dimensional), making vertical and horizontal crown shape difficult to determine.

2.5. Photo-interpreters

For validation process of the identification keys, photo-interpreters were invited on voluntary basis. The photo-interpreters were briefed on development of keys, terminologies and 'how to use of Image J software' only on the day of validation.

Therefore, photo-interpreter's familiarity with the keys and Image J software might also have contributed to errors in identification accuracy which was also reported similarly by Gonzalez-Orozco *et al.* (2010).

2.6. Image J

In this research, I tried to look at the possibility to use of Image J software in tree species identification. It worked quite well for some of the species, but a lot of inconsistencies were observed as Image-J attributes (hue, saturation and brightness) were influenced by weather at the field (rainy, sunny, foggy, etc.).

Therefore, Image J keys cannot be used independently to identify tree species but could complement other keys.

Figure 3.33 98.2 (BMSM Training plot) 3D model (Pix4D) –Orthorectified photographs (Left) and Original digital photographs (right)

2.7. Structural complexity of tree crowns

The shape of tree crowns varies between different species and within same species in relation to its course of development.

The crown shapes also vary widely depending on strata, ranging from more or less umbrella shaped crown in 'A' layer to isodiametric crowns in 'B' layer, to a narrow tapering crown at 'C' layer (Figure 3.34) (Richards, 1996). Striking differences were also observed between shape of crown in young and old trees of the same species in Malayan dipterocarps by Brunig (1974).

Tree crown features were more easily seen in trees on the edges of clearings and isolated individuals compared to the interior of forest where the form of the whole tree was often hard to determine (Richards, 1996). The canopy at the highest stratum with close-packed crowns showed crown-shyness with neighboring trees, i.e. they are usually separated by narrow gaps (Ng, 1977; Whitmore, 1984).

These structural complexities make it difficult to objectively apply crown delineation properties in our approach, which may also have contributed to errors to correctly identify target tree species (Gonzalez-Orozco *et al.* 2010).

Figure 3.34 Profile diagram of mixed forest (Richards, 1996)

2.8. Automated tree species identification

The work presented here used visual keys to identify species – combining classical taxonomy with manual image filtering. The next step would be the development of automated tree identification. Technological advancements, such as machine learning and artificial intelligence are now making such automated classification of tree species using remotely sensed data possible. Much research has been carried out, using specialized hardware such as airborne hyperspectral, multispectral, and LiDAR sensors (Asner *et al.* 2007, 2008; Holmgren *et al.*, 2008) with UAV's rapidly becoming the preferred platform for such devices, since objective avoidance technologies now enable them to fly close to forest canopies and their operation cost are much lower compared with satellites or airborne based imaging systems (Koh & Wich, 2012; Anderson & Gaston, 2013; Getzin *et al.*, 2012).

Onishi & Ise (2018) used a publicly available deep learning package and constructed a machine vision system for the automatic classification of trees. They segmented basic digital RGB images acquired from unmanned aerial vehicle (UAV) of forest into individual tree crowns and carried out object-based deep learning. They could successfully classify 7 tree types (deciduous, evergreen and three species) at 89.0% accuracy. Their findings are notable and have potential to classify individual trees in a cost-effective way.

3. Application

Our approach has great potential to find trees of framework species especially for seed collection. Tree seed collection in most countries from remnant forest remains essential, but current methods are primitive. Collectors walk along forest trails, with binoculars pointed aloft, searching for ripe fruits amongst the minute fraction of the forest canopy that is visible from the ground. Even when a fruiting tree is found, the seeds may not be ripe, necessitating a tedious return trip. So, collectors tend to visit the same trees year after year, which narrows the genetic variety of the planting stock. Clearly, conventional seed collection is inefficient, unpredictable and consequently expensive.

Elliott *et al.* (2003) classified and ranked trees of framework species based on their field performance in restored plots of Ban Mae Sa Mai, Doi Suthep-Pui National Park,

Northern Thailand. Four tree species (*Prunus cerasoides, Choerospondias axillaris, Ficus altissima, Magnolia garrettii*) which I studied were also listed in their research. Among these, *Prunus cerasoides* and *Choerospondias axillaris* were ranked as excellent, *Ficus altissima* as acceptable and *Magnolia garrettii* as marginal. The overall identification accuracy for *Choerospondias axillaris* was 95%, *Ficus altissima* was at 67%, *Magnolia garrettii* at 75% and *Prunus cerasoides* at 27%. Even though, *Prunus cerasoides* had lower overall identification accuracy but it was identified with 100% reliability during its flowering season (when the crowns turn pink). Therefore, our approach will enhance the efficiency and efficacy to look for trees of framework species and to subsequently monitor for fruit-set and ripeness for seed collection.

Another applicability of our approach is to monitor forest recovery in restoration projects. Our approach will help to determine the tree species composition (relative abundance) and also assess the long-term success or failure of individual species in terms of species diversity. Similar applications were also reported by Trichon & Julien (2006) and Gonzalez-Orozco *et al.* (2010).

Chapter 4

Conclusion

The combined use of dichotomous and monthly tree species identification keys (crown, leaf and image filtering) developed using digital aerial photographs from unmanned aerial vehicle (UAV) makes this research original.

In this research, I got an overall tree species identification accuracy of 67%, while error of omission was at 33% and error of commission at 48%. The overall species-wise identification accuracy for seven of nine species exceeded 50% of which, for four species (*Pinus kesiya, Choerospondias axillaris, Magnolia garrettii, Artocarpus gomezianus*), it was above 70%.

Our method might be a step closer to an approach called aerial taxonomy (Gonzalez-Orozco *et al.*, 2010), which linked photographic data with taxonomic knowledge to object-oriented classification technology. Therefore, in the future, more studies are needed to explore ways to link our keys to automatic species-identification approaches (Asner *et al.* 2007, 2008; Holmgren *et al.*, 2008; Lucas *et al.*, 2008; Baena *et al.*, 2017), object-oriented technologies (Gonzalez-Orozco *et al.*, 2010) and deep learning (Onishi & Ise, 2018).

References

- Anderson, K. & Gaston, K. 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment. 11. 138-146. 10.2307/23470549.
- Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, Ty., Jones, M.O., Martin, R.E., Boardman, J. & Field, C.B., 2007. Carnegie airborne observatory: inflight fusion of hyperspectral imaging and waveform light detection and ranging (LiDAR) for three-dimensional studies of ecosystems. Journal of Applied Remote Sensing 1: 1–20.
- Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, Ty., Jones, M.O., Martin, R.E., Boardman,
 J. & Hughes, F. 2008. Invasive species detection in a Hawaiian rainforest using airborne imaging spectroscopy and LiDAR. Remote Sensing of Environment 112: 1942–1955.
- Baena, S., Moat J., Whaley O., Boyd D.S. 2017. Identifying species from air: UAVs and the very high-resolution challenge for plant conservation. PLoS ONE 12(11): e0188714.
- Brandtberg, T. & Walter, F. 1998. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Machine Vision and Applications 11: 64–73.
- Brunig, E. F., 1974. Ecological studies in the kerangas forests of Sarawak and Brunei. Kuching, Malaysia: Borneo Literature Bureau for Sarawak Forest Department.

- Chubey, M., Franklin, S.E. & Wulder, M.A. 2006. Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogrammetric Engineering of Remote Sensing 72: 383–394.
- Clark, D.B., Read, J.M., Clark, M.L., Cruz, A.M., Dotti, M.F. & Clark, D.A., 2004. Application of 1-m and 4-m resolution satellite data to ecological studies of tropical rain forests. Ecol. Appl. 14, 61–74.
- Clark, M., D. Roberts & D. Clark. 2005. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. remote sens. environ. 96: 375–398.
- Culvernor, D.S. 2002. TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Computers Geoscience 28: 33–44.
- Dandois, J. & Ellis, E.C., 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 136, 259.
- Elliott, S., Blakesley, J. F. Maxwell, S. Doust, & S. Suwanarattana. 2003. Selecting Framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. Forest Ecology and Management 184; 177–191
- Elliott, S., D. Blakesley, J. F. Maxwell, S. Doust, & S. Suwanarattana. 2006. How to plant a forest: The principles and practice of restoring tropical forest. Chiang Mai University, Forest Restoration Research Unit. 200 Pp.

- Fenshman, R.J., Fairfax, R.J., Holman, J.E. & White-head, P.J. 2002. Quantitative assessment of vegetation structural attributes from aerial photographs. Inter-national Journal of Remote Sensing 2311: 2293–2311.
- Gardner, S., Sidisunthorn P. & Anusarnsunthorn V., 2007, Field Guide to Forest Trees of Northern Thailand, Kobfai Publishing Project, Bangkok, ISBN 978-974-8367-29-3
- Gergel, S. E., Y. Stange, N. C. Coops, K. Johansen & K. R. Kirby. 2007. What is the value of a good map? An example using high Spatial resolution imagery to aid riparian restoration. Ecosystems 10: 688–702.
- Getzin, S., K. Weigand & I. Schöning. 2012. Assessing biodiversity in forests using very high-resolution Images and unmanned aerial vehicles. Meth. Ecol. Evol. 3: 397–404.
- Gonzalez-Orozco, C. E., M. Mulligan, V. Trichon & A. Jarvis. 2010. Taxonomic Identification of Amazonian tree crowns from aerial photography. Appl. Veg. Sci. 13: 510–519.
- Goosem, S.P. & Tucker, N.I.J., 1995. Repairing the Rainforest—Theory and Practice of rainforest Re-establishment in North Queensland's Wet Tropics. Wet Tropics Management Authority, Cairns. 80 pp.
- Herwitz, S., Slye, R. & Turton, S., 1998. Redefining the ecological niche of a tropical rain forest canopy tree species using airborne imagery: long-term crown dynamics of *Toona ciliata*. J. Trop. Ecol. 14, 683–703.
- Herwitz, S. R., R. E. Syle & S. M. Turton., 2000. Long-term survivorship and crown area dynamics of tropical rain forest canopy trees. Ecology 81: 585–597.

- Holmgren, J., Persson, A. & Soderman, U., 2008. Species identification of individual trees by combining high resolution LiDAR data and multi-spectral images. International Journal of Remote Sensing 29: 1537–1552
- Leckie, D.G., Gougeon, F.A., Walsworth, D. & Paradine, D. 2003. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sensing of Environment 85: 355–369.
- Lucas, R.M., Bunting, P., Paterson, M. & Chisholm, L. 2008. Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sensing of Environment 112: 2088–2103.
- Koelmeyer, K.O., 1959. The periodicity of leaf change and flowering in the principal forest communities of Ceylon. Ceylon for., 4:157-189.
- Koh, L. & Wich, S. 2012. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science. 5. 121-132. 10.5167/uzh-72781.
- Morgan, J.L., S. E. Gergel & N. C. Coops. 2010. aerial photography: A rapidly evolving tool for Ecological Management. Bioscience 60: 47–59.
- Myers, B.J., & Benson, M.L., 1981. Rainforest species on large-scale colour photos. Photogramm. Eng. Remote Sensing 41, 505–513.
- Myers, B.J., 1982. Guide to the identification of some tropical rainforest species from large-scale color aerial photographs. Aust. Forester 45 (1), 28–41.
- Myers, B.J. 1982a. Large-Scale color aerial photographs: a useful tool for tropical biologist. Biotropica 14: 156–157.

- Myers, B.J. 1982b. Guide to the identification of some tropical rain forest species from large-scale colour aerial photographs. Australian Forestry 45: 28–41.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
- Ng, F.S.P. 1977. Shyness in trees. Nature Malaysia, 2: 34-37.
- Nagendra, H., Rocchini, D. 2008. High resolution satellite imagery for tropical biodiversity studies: the devil is in detail. Biodiversity and Conservation 17: 3431–3442.
- Onishi M. & Ise T., 2018, Automatic classification of trees using a UAV onboard camera and deep learning, arXiv preprint arXiv:1804.10390
- Paneque-Gálvez, J., McCall, M.K., Napoletano, B.M., Wich, S.A. & Koh, L.P., 2014. Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests 5 (6), 1481– 1507.
- Pouliot, D.A., King, D.J., Bell, F.W. & Pitt, D.G. 2002. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment 82: 322–334
- Read, J.M., Clark, D.B., Venticinque, E.M. & Moreiras, M.P., 2003. Application of merged1-m and 4-m resolution satellite data to research and management in tropical forests. J. Appl. Ecol. 40, 592–600.
- Richards, P.W., 1996. *The tropical rain forest: An ecological study*, second edition. Cambridge University Press, Cambridge, UK. xxiii + 575 pages. ISBN 0-521-42194-2.

- Sayn-Wittgenstein, L., De Milde, R. & Inglis, C.J. 1978. Identification of tropical trees on aerial photographs FMR-X-113. Forest Management Institute, Canada.
- Sayn-Wittgenstein, L. 1978. New developments in tropical forest inventories. Proceedings of the 12th International Symposium on Remote Sensing of Environment. pp. 1187–98. Ottawa, Ontario, CA.
- Sutton, S.L., 2001. Alice grows up: canopy science in transition from Wonder-land to Reality. Plant Ecol. 153, 13–21.
- Trichon, V., 2001. Crown typology and the identification of rain forest trees on largescale aerial photographs. Plant Ecol. 153, 301–312.
- Trichon, V. & Julien, M.P. 2006. Tree species identification on large-scale aerial photographs in a tropical rain forest, French Guiana-application for management and conservation. Forest Ecology and Management 225: 51–61.
- Whitmore, T.C. 1984: *Tropical rain forests of the Far East*, second edition. Oxford: Clarendon Press. xvi + 352 pp.
- Vooren, A.P., & Offermans, D.M.J., 1985. An ultra-light aircraft for low-cost, large-scale stereoscopic aerial photographs. Biotropica 17 (1), 84–88.
- Zahawi, R.A., Dandois, J.P., Holl, K.D., Nadwodny, D., Reid, J.L. & Ellis, E.C., 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol. Conserv. 186, 287–295.

APPENDICES

Appendix A- Tree species identification photographs

Plot ID	DJI #	Tree ID		Coordinates		Drone Waypoints	Ti	Time		Drone Battery %	Drone Distance	Pictures Taken (1)	Tree Species
		FORRU ID	Tree ID	Latitude	Longitude	1	Start	End			from Home	or (X)	
	272	HOME				1	11:52 9 :34		12	94 - 92	4 meter		
R1.1	273	A-66-104	1	18.857450	98.848030	2	11:53			୫୩		1/127	Spondias axillaris
R1.1	275		2	18.857480	98.848060	3	11:54		Ħ	88	*	1/(2)	Prunus cerasoides
R1.1	278	A-72-58	3	18.857540	98.848010	4	11:55			88		VJ(2)	Ficus altissima
R1.1	280	A-01-72	4	18.857550	98.847920	5	11: 55		17	88	13.9	JJ (2)	Ficus altissima
R1.1	282	A01-66-29	5	18.857520	98.847890	6	11:55		17	84	13.8	JJ(2)	Spondias axillaris
R1.1	284	B335-37	7	18.857690	98.847760	7	11:56		17	81	14.8	11 (2)	Castanopsis calathifor
R1.1	286		6	18.857610	98.847720	8	11:57		17	80	14	N(2)	Schima wallichii
R1.1	288		8	18.857600	98.847720	9	11:57		17	75	13	11(2)	Schima wallichii
R1.1	290	B66-138	12	18.857740	98.847680	10	11:57		17	74	13	$\mathcal{N}(2)$	Spondias axillaris
R1.1	292	B01-335	11	18.857930	98.847630	11	11:58		17	74	14	JJ(2)	Castanopsis calathifor
R1.1	294	B66-151	13	18.857980	98.847650	12	11:59		17	71	67	11(2)	Spondias axillaris
R1.1	296	B71-60	14	18.857920	98.847750	13	11:59		17	18	70	11(2)	Prunus cerasoides
R1.1	292	B71-62	14.1	18.857920	98.847720	14			10		10	(1)	Prunus cerasoides

Appendix B- Snapshots of field and validation documents

Sn	Date	Photo-Interpreter's Name	Address/Office/ Department	Signature
1	12/2/2019	Rattanamon Aisao	FORRU- CMU	fria
2	12/2/19	Janik krobtay	FORRU	Ale
3	13/2/2019	Fletcher Ken	FORRU	Sitter
4	13/2/2019	Derek Tomlinson	СМИ	Sal.
5	13/2/14	Apivit Chansai	FORRU	Du
6	13/2/19	Kathryn Hams	FORKU	Kall Hee
7	13/2/19	Panipak soetan	Смц	Panipak.
В	14/1/19	Nout KANYAPHIM	CMU	NOUT
9	12/2/19	Beeupethot chaitlag	CMU	Reeyaphot,
10	14/2/19	Miatta Kiawu	CM4/ESRC	Miaure
١.	14/2/19	Khuanphirom Norvangsri	BTO CMU.	Khuomphirom

Name of	Nationality	Profession	Target species	Month of	Total no. trees	No. of trees	No. of trees	No. of trees	%	% Error of	% Error of
Photo- interpreters				photograph (M/Y)	of target species in photographs	Correctly identified of target species	missed of target species	incorrectly identified as target	Found	Omission	Commission
								species			
Derek	American	Undergraduate student	Artocarpus gomezianus	8/18	9	5	4	1	55.6	44.4	11.1
			Castanopsis calathiformis	10/18	11	6	5	0	54.5	45.5	0.0
			Castanopsis tribuloides	9/18	3	1	2	0	33.3	66.7	0.0
			Choerospondias axillaris	11/18	8	7	1	0	87.5	12.5	0.0
			Ficus altissima	12/18	2	1	1	1	50.0	50.0	50.0
			Magnolia garrettii	1/19	5	2	3	0	40.0	60.0	0.0
			Pinus kesiya	7/18	2	2	0	0	100.0	0.0	0.0
			Prunus cerasoides	8/18	1	0	1	4	0.0	100.0	400.0
			Toona ciliata	9/18	3	2	1	0	66.7	33.3	0.0
Fletcher	American	Undergraduate student	Artocarpus gomezianus	9/18	5	5	0	0	100.0	0.0	0.0
			Castanopsis calathiformis	11/18	3	1	2	6	33.3	66.7	200.0
			Castanopsis tribuloides	10/18	3	1	2	6	33.3	66.7	200.0
			Choerospondias axillaris	12/18	13	12	1	0	92.3	7.7	0.0
			Ficus altissima	1/19	2	0	2	2	0.0	100.0	100.0
			Magnolia garrettii	7/18	10	10	0	0	100.0	0.0	0.0
			Pinus kesiya	8/18	4	4	0	0	100.0	0.0	0.0
			Prunus cerasoides	9/18	1	0	1	1	0.0	100.0	100.0
			Toona ciliata	10/18	3	2	1	4	66.7	33.3	133.3
Apirit	Thai	FORRU Staff	Artocarpus gomezianus	7/18	5	3	2	0	60.0	40.0	0.0
			Castanopsis calathiformis	8/18	8	0	8	6	0.0	100.0	75.0
			Castanopsis tribuloides	8/18	4	2	2	0	50.0	50.0	0.0
			Choerospondias axillaris	10/18	8	8	0	0	100.0	0.0	0.0
			Ficus altissima	11/18	3	1	2	2	33.3	66.7	66.7
			Magnolia garrettii	12/18	8	8	0	0	100.0	0.0	0.0
			Pinus kesiya	1/19	2	2	0	0	100.0	0.0	0.0
			Prunus cerasoides	7/18	1	0	1	0	0.0	100.0	0.0
			Toona ciliata	8/18	3	2	1	0	66.7	33.3	0.0
Jarik	Thai	FORRU Staff	Artocarpus gomezianus	10/18	8	7	1	1	87.5	12.5	12.5
			Castanopsis calathiformis	12/18	10	1	9	1	10.0	90.0	10.0
			Castanopsis tribuloides	11/18	5	4	1	2	80.0	20.0	40.0
			Choerospondias axillaris	1/19	12	12	0	0	100.0	0.0	0.0
			Ficus altissima	7/18	4	2	2	6	50.0	50.0	150.0
			Magnolia garrettii	8/18	7	4	3	3	57.1	42.9	42.9
			Pinus kesiya	9/18	3	3	0	0	100.0	0.0	0.0
			Prunus cerasoides	10/18	1	0	1	5	0.0	100.0	500.0
			Toona ciliata	11/18	4	3	1	0	75.0	25.0	0.0

Appendix C- Key Validation Results

Name of Photo- interpreters	Nationality	Profession	Target species	Month of photograph (M/Y)	Total no. trees of target species in photographs	No. of trees Correctly identified of target species	No. of trees missed of target species	No. of trees incorrectly identified as target species	% Found	% Error of Omission	% Error of Commission
Rattanamon	Thai	FORRU Staff	Artocarpus gomezianus	9/18	4	2	2	0	50.0	50.0	0.0
			Castanopsis calathiformis	11/18	4	2	2	1	50.0	50.0	25.0
			Castanopsis tribuloides	10/18	3	2	1	4	66.7	33.3	133.3
			Choerospondias axillaris	12/18	8	8	0	0	100.0	0.0	0.0
			Ficus altissima	1/19	2	0	2	2	0.0	100.0	100.0
			Magnolia garrettii	7/18	7	6	1	1	85.7	14.3	14.3
			Pinus kesiya	8/18	3	3	0	0	100.0	0.0	0.0
			Toona ciliata	10/18	3	2	1	0	66.7	33.3	0.0
Panipak	Thai	Postgraduate student	Artocarpus gomezianus	8/18	5	5	0	1	100.0	0.0	20.0
			Castanopsis calathiformis	10/18	8	3	5	1	37.5	62.5	12.5
			Castanopsis tribuloides	9/18	2	1	1	1	50.0	50.0	50.0
			Choerospondias axillaris	11/18	8	8	0	0	100.0	0.0	0.0
			Ficus altissima	12/18	2	2	0	4	100.0	0.0	200.0
			Magnolia garrettii	1/19	6	6	0	0	100.0	0.0	0.0
			Pinus kesiya	7/18	2	2	0	0	100.0	0.0	0.0
			Prunus cerasoides	8/18	1	1	0	0	100.0	0.0	0.0
			Toona ciliata	9/18	3	2	1	2	66.7	33.3	66.7
Kathryn	American	Undergraduate student	Artocarpus gomezianus	8/18	6	5	1	0	83.3	16.7	0.0
-		-	Castanopsis calathiformis	10/18	8	7	1	1	87.5	12.5	12.5
			Castanopsis tribuloides	9/18	3	2	1	3	66.7	33.3	100.0
			Choerospondias axillaris	11/18	7	6	1	0	85.7	14.3	0.0
			Ficus altissima	12/18	2	2	0	5	100.0	0.0	250.0
			Magnolia garrettii	1/19	4	2	2	0	50.0	50.0	0.0
			Pinus kesiya	7/18	2	2	0	0	100.0	0.0	0.0
			Prunus cerasoides	8/18	1	1	0	0	100.0	0.0	0.0
			Toona ciliata	9/18	3	2	1	0	66.7	33.3	0.0
Miatta	Liberian	Postgraduate student	Artocarpus gomezianus	11/18	4	3	1	1	75.0	25.0	25.0
		-	Castanopsis calathiformis	1/19	3	0	3	0	0.0	100.0	0.0
			Castanopsis tribuloides	12/18	2	2	0	0	100.0	0.0	0.0
			Choerospondias axillaris	7/18	6	6	0	0	100.0	0.0	0.0
			Ficus altissima	8/18	2	2	0	0	100.0	0.0	0.0
			Magnolia garrettii	9/18	9	5	4	1	55.6	44.4	11.1
			Pinus kesiva	10/18	3	3	0	0	100.0	0.0	0.0
			Prunus cerasoides	11/18	1	0	1	1	0.0	100.0	100.0
			Toona ciliata	12/18	3	0	3	5	0.0	100.0	166.7
Name of Photo- interpreters	Nationality	Profession	Target species	Month of photograph (M/Y)	Total no. trees of target species in photographs	No. of trees Correctly identified of target species	No. of trees missed of target species	No. of trees incorrectly identified as target species	% Found	% Error of Omission	% Error of Commission
-----------------------------------	-------------	----------------------	---------------------------	---------------------------------	---	--	---	---	------------	------------------------	--------------------------
Nout	Laotian	Postgraduate student	Artocarpus gomezianus	1/19	5	2	3	1	40.0	60.0	20.0
		C C	Castanopsis calathiformis	8/18	6	2	4	2	33.3	66.7	33.3
			Castanopsis tribuloides	7/18	3	2	1	0	66.7	33.3	0.0
			Choerospondias axillaris	9/18	6	5	1	0	83.3	16.7	0.0
			Ficus altissima	10/18	1	1	0	1	100.0	0.0	100.0
			Magnolia garrettii	11/18	8	5	3	0	62.5	37.5	0.0
			Pinus kesiya	12/18	2	2	0	0	100.0	0.0	0.0
			Prunus cerasoides	1/19	1	1	0	0	100.0	0.0	0.0
			Toona ciliata	7/18	3	2	1	0	66.7	33.3	0.0
Preeyaphat	Thai	Postgraduate student	Artocarpus gomezianus	12/18	4	3	1	6	75.0	25.0	150.0
			Castanopsis calathiformis	7/18	4	4	0	4	100.0	0.0	100.0
			Castanopsis tribuloides	1/19	4	2	2	2	50.0	50.0	50.0
			Choerospondias axillaris	8/18	6	6	0	0	100.0	0.0	0.0
			Ficus altissima	9/18	3	3	0	4	100.0	0.0	133.3
			Magnolia garrettii	10/18	3	3	0	0	100.0	0.0	0.0
			Pinus kesiya	11/18	2	2	0	0	100.0	0.0	0.0
			Prunus cerasoides	12/18	1	0	1	4	0.0	100.0	400.0
			Toona ciliata	1/19	3	0	3	6	0.0	100.0	200.0
Khuanphirom	Thai	Postgraduate student	Artocarpus gomezianus	7/18	6	6	0	0	100.0	0.0	0.0
			Castanopsis calathiformis	8/18	12	11	1	0	91.7	8.3	0.0
			Castanopsis tribuloides	8/18	4	3	1	0	75.0	25.0	0.0
			Choerospondias axillaris	10/18	6	6	0	0	100.0	0.0	0.0
			Ficus altissima	1/19	2	2	0	1	100.0	0.0	50.0
			Magnolia garrettii	12/18	9	7	2	1	77.8	22.2	11.1
			Pinus kesiya	1/19	2	2	0	0	100.0	0.0	0.0
			Prunus cerasoides	7/18	1	0	1	1	0.0	100.0	100.0
			Toona ciliata	8/18	4	4	0	2	100.0	0.0	50.0

Appendix D- Validation day photographs

Appendix E- Aerial taxonomic keys

1. Prunus cerasoides (January)

Key descriptors	Key description					
Tree crown keys	CT multiple, VCS Flat, HCS Irregular, FT rough, CC dull green with					
(Key A)	yellow patches & visib	yellow patches & visible branches				
Loof hour (Voy D)	LT compound, LA imparipinnate, LS narrowly ovate with tapering					
Lear keys (Key D)	end, LC dull green					
Image J keys (Key C)	Hue: 0/53-64	Sat: 10-40/85-255	Bright: 90-110/255			
Phenology	Leaf fall (Crown densit	ty=0)				
Identification Accuracy	100% (January)					
Recommendation	Fly drone at 50m above	e ground in January				

2. Castanopsis calathiformis (July)

Key descriptors	Key description					
Tree crown keys	CT Single, VCS More	CT Single, VCS More rounded, HCS Oval, CM Entire, FT rough,				
(Key A)	CC yellowish dull gre	CC yellowish dull green				
Loofhous (Voy D)	LT simple, LA alternate spiral, LS elliptic, LC glossy dull green					
Lear keys (Key D)	and yellow					
Image J keys (Key C)	Hue: 0/80-115	Sat: 0/65-101	Bright: 128-141/255			
Phenology	Flowering					
Identification Accuracy	100% (July)					
Recommendation	Fly drone at 50m above ground in July					

3. Choerospondias axillaris (January)

Key descriptors	Key description					
Tree crown keys	CT multiple, VCS Fl	at, HCS Elongated, F	Γ smooth, CC visible			
(Key A)	branches with almost	all leaves shed				
Leaf keys (Key B)	LT compound, LA pa	LT compound, LA paripinnate, LS lanceolate with tapering end,				
	LC yellowish green					
Image J keys (Key C)	Hue: 10-40/59	Sat: 10-40/51-91	Bright: 80-110/255			
Phenology	Leaf fall (Crown dens	ity=0)				
Identification Accuracy	100% (January)					
Recommendation	Fly drone at 50m above	e ground in January				

4. Toona ciliata (August)

Key descriptors	Key description						
Tree crown keys	CT multiple. VCS Fla	t. HCS Irregular. FT ro	ough. CC dull green				
(Key A)	01 manipio, + 02 m						
Leaf keys (Key B)	LT compound, LA imparipinnate, LS narrowly ovate with tapering						
Lear Reys (Rey D)	end, LC dull green						
Image J keys (Key C)	Hue: 88/135	Sat: 0/124-159	Bright: 113-144/255				
Phenology							
Identification Accuracy	83% (August)						
Recommendation	Fly drone at 50m above	e ground in August					

Appendix F- Statistical Test Results

1. Artocarpus gomezianus

ANOVA one-way results

		Sum of Squares	df	Mean Square	F	Sig.
% Found	Between Groups	106409.881	6	17734.980	67.398	.000
	Within Groups	216300.350	822	263.139		
	Total	322710.232	828			
% Error of Omission	Between Groups	106409.881	6	17734.980	67.398	.000
	Within Groups	216300.350	822	263.139		
	Total	322710.232	828			
% Error of	Between Groups	1310202.422	6	218367.070	53417.608	.000
Commission	Within Groups	3360.273	822	4.088		
	Total	1313562.695	828			

2. Castanopsis calathiformis

		Sum of Squares	df	Mean Square	F	Sig.
% Found	Between Groups	763426.032	5	152685.206	856.554	.000
	Within Groups	146704.074	823	178.255		
	Total	910130.106	828			
% Error of	Between Groups	763426.032	5	152685.206	856.554	.000
Omission	Within Groups	146704.074	823	178.255		
	Total	910130.106	828			
% Error of	Between Groups	1740390.041	5	348078.008	178.434	.000
commission	Within Groups	1605454.185	823	1950.734		
	Total	3345844.227	828			

3. Castanopsis tribuloides

		Sum of Squares	df	Mean Square	F	Sig.
% Found	Between Groups	280161.863	5	56032.373	2102.862	.000
	Within Groups	19264.887	723	26.646		
	Total	299426.750	728			
% Error of	Between Groups	280161.863	5	56032.373	2102.862	.000
Omission	Within Groups	19264.887	723	26.646		
	Total	299426.750	728			
% Error of	Between Groups	1748130.444	5	349626.089	121.591	.000
Commission	Within Groups	2078942.520	723	2875.439		
	Total	3827072.964	728			

ANOVA one-way results

4. Choerospondias axillaris

ANOVA one-way results

		Sum of Squares	df	Mean Square	F	Sig.
% Found	Between Groups	22223.962	6	3703.994	228.809	.000
	Within Groups	13306.654	822	16.188		
	Total	35530.617	828			
% Error of	Between Groups	22223.962	6	3703.994	228.809	.000
Omission	Within Groups	13306.654	822	16.188		
	Total	35530.617	828			
% Error of	Between Groups	.000	6	.000		
Commission	Within Groups	.000	822	.000		
	Total	.000	828			

5. Ficus altissima

		Sum of Squares	df	Mean Square	F	Sig.
% Found	Between Groups	464171.349	5	92834.270	104.084	.000
	Within Groups	734046.610	823	891.916		
	Total	1198217.959	828			
% Error of Omission	Between Groups	464171.349	5	92834.270	104.084	.000
	Within Groups	734046.610	823	891.916		
	Total	1198217.959	828			
% Error of	Between Groups	2590505.907	5	518101.181	185.967	.000
Commission	Within Groups	2292870.245	823	2785.991		
	Total	4883376.152	828			

6. Magnolia garrettii

ANOVA one-way results

		Sum of	df	Mean Square	F	Sig.
		Squares				
% Found	Between	214108.060	5	42821.612	187.203	.000
	Groups					
	Within Groups	188256.496	823	228.744		
	Total	402364.556	828			
% Error of Omission	Between	214108.060	5	42821.612	187.203	.000
	Groups					
	Within Groups	188256.496	823	228.744		
	Total	402364.556	828			
% Error of	Between	95265.762	5	19053.152	957.018	.000
Commission	Groups					
	Within Groups	16385.000	823	19.909		
	Total	111650.762	828			

7. Pinus kesiya

		Sum of	df	Mean	F	Sig.
		Squares		Square		
% Found	Between Groups	.000	6	.000	.000	1.000
	Within Groups	.000	822	.000		
	Total	.000	828			
% Error of Omission	Between Groups	.000	6	.000		
	Within Groups	.000	822	.000		
	Total	.000	828			
% Error of Commission	Between Groups	.000	6	.000		
	Within Groups	.000	822	.000		
	Total	.000	828			

8. Prunus cerasoides

ANOVA one-way results

		Sum of	df	Mean	F	Sig.
		Squares		Square		
% Found	Between Groups	730011.601	6	121668.600	366.709	.000
	Within Groups	272727.273	822	331.785		
	Total	1002738.873	828			
% Error of Omission	Between Groups	730011.601	6	121668.600	366.709	.000
	Within Groups	272727.273	822	331.785		
	Total	1002738.873	828			
% Error of	Between Groups	22654834.515	6	3775805.753	582.842	.000
Commission	Within Groups	5325133.402	822	6478.264		
	Total	27979967.917	828			

9. Toona ciliata

		Sum of Squares	df	Mean Square	F	Sig.
% Found	Between Groups	580884.539	6	96814.090	1913.774	.000
	Within Groups	41583.375	822	50.588		
	Total	622467.914	828			
% Error of Omission	Between Groups	580884.539	6	96814.090	1913.774	.000
	Within Groups	41583.375	822	50.588		
	Total	622467.914	828			
% Error of Commission	Between Groups	3199945.115	6	533324.186	390.488	.000
	Within Groups	1122677.136	822	1365.787		
	Total	4322622.251	828			

Curriculum vitae

Author's name	Mr. Krishna Bahadur Rai			
Date/Year of birth	August 20, 1984			
Place of birth	Tsirang, Bhutan			
Education	2002, Indian School Certificate, Class XII,			
	Jigmesherubling Higher Secondary School,			
	Khaling, Trashigang, Bhutan 2006,			
	Bachelor's Degree in Science with Major in			
	Zoology, St. Joseph's College, North Point,			
	Darjeeling, West Bengal, India			
Scholarship	(2017-2019) Partial funding by Thailand			
	International Cooperation Agency (TICA) &			
	Bhutan Power Corporation Limited (BPC)			
Experience	(2007-till date) Environmental Officer at			
	Bhutan Power Corporation Limited (BPC),			
	Thimphu, Bhutan			
Training/Conferences attended	December 10-14, 2007; Training workshop			
	on Environment Impact Assessment (EIA),			
	Ministry of Economic Affairs and National			
	Environment Commission (NEC),			
	Phuentsholing, Bhutan			
	May 20-25, 2009; Training on Green House			
	Inventory and Mitigation Assessment,			
	Paibare Inc., Metro Manila, Philippines			
	August 10-12, 2010; Basic PI Solving			
	Training, JICA, Thimphu, Bhutan			

Training/Conferences attended (Continued)

October 19-25, 2010; Training on EIA and GIS Application, DFI Training Services, Makati city, Philippines

July 16-24, 2012; Training program for Management Excellence in Environmental Risk Mitigation, Management, Monitoring and Evaluation, DFI Training Services, Makati city, Philippines

September 2-6, 2013; Training on Environmental Impact Assessment and Environmental Management for Power Transmission Line Projects, National Environment Commission (NEC) & Centre for Science and Environment (CSI)-New Delhi, Paro Bhutan.

September 8-13, 2013; Training workshop on Compliance Monitoring Processes and Protocol towards Environment Mainstreaming and Emission Reduction, National Environment Commission (NEC) & Centre for Science and Environment (CSI)-New Delhi, Phuentsholing, Bhutan

March 19-20, 2014; Conference on Environment Friendly Best Practices in Industrial Estates and Waste Management, DHI-INFRA, Thimphu, Bhutan

March 26 to April 4, 2014; Training program on SAR ERP Project System, Bhutan Power Corporation Limited, Thimphu, Bhutan Training/Conferences attended (Cont'd.)

May 12-14, 2014; Training Program on Environmental Management of Power Transmission Line Projects, National Environment Commission (NEC), Thimphu, Bhutan

May 19-22, 2014; Training on Fundamentals of Climate Change Adaptation, WWF Bhutan, Thimphu, Bhutan

May 11-14, 2015; Conference of for International Association Impact Assessment (IAIA 16), Aichi-Nagoya, Japan. December 13-18, 2015; Study Tour to Power Corporations in Philippines; Paibare Inc., Metro Manila, Philippines June 30- July 2, 2016; Intensive course on HO REN SO, MASLOW Trainers and Consultants-Malaysia, Thimphu, Bhutan

March 6-17, 2017; Training on Social Impact Assessment (SIA) and Basics of SPSS, Athang Training Academy, Thimphu, Bhutan

